《专题08 平行四边形模块中档大题过关20题 (原卷版).docx》由会员分享,可在线阅读,更多相关《专题08 平行四边形模块中档大题过关20题 (原卷版).docx(12页珍藏版)》请在第壹文秘上搜索。
1、平行四边形模块中档题过关30题(原卷版)专题简介:本份资料包含平行四边形、矩形、菱形、正方形这四节的主流中档大题,所选题Fl源自近四年各名校试题中的有代表性的优质试题,把每一个模块中的高频考题按题型进行分类汇编,立意于让学生们用较短的时间刷考试最喜欢考的题、刷最有利于提分的好题,也适合于培训机构老师给学生进行专题复习时使用。平行四边形-:平行四边形、矩形、菱形的性质汇总平行四边形矩形边的方向大小关系位置关系平行四边形0角的方向I对角相等邻角互补对角线:互相平分(空,黑?。为8。中点角二90对角线相等菱形邻边相等对角线垂直二:平行四边形的判定:两个条件,五种判定方法一组对边平行且相等边的方U两组
2、对边平行两组对边相等平行四边形的判定角的方向:两组对角僻Cr对角线:对角线互相平分OB=OD1.(长郡)如图,在平行四边形ANa)中,对角线AC,加相交于点O,分别过点4,。作AE1.4D,CFBD,垂足分别为E,F.AC平分NAME.(1)若NAQE=50o,求NACB的度数;(2)求证:AE=CF.2. (2021秋长沙期中)如图,在口ABCO中,AE平分NBAO交BO于点号交BC于点M,Cr平分NBCo交BD于点、F.(1)求证:AE=CF(2)若NABC=70。,求N4M8的度数.3. (2018吉林模拟)如图,在口ABCO中,E是BC的中点,连接AE并延长交OC的延长线于点F.(1)
3、求证:AB=CFi(2)连接DE,若AO=2A8,求证:DE1.AF.并延4. (明德)在平行四边形ABCD中,点E,F分别是BC,CD上的点,且DF=CF,连接AE,AF,长AF交BC的延长线于点P.(1)求证:AADFgAPCF;(2)若AE=2,AF=4,/EAF=60。,求PE的长。矩形矩形的判定:三个条件或者“2+1”模式三个角是直角的四边形是矩形;对角线相等的平行四边形是矩形;有一个角是直角的平行四边形是矩形.5. (2021秋雨花区校级月考)如图,四边形ABC。是菱形,对角线AG8。相交于点。BOCACEB.(1)求证:四边形08EC是矩形;(2)若ND4C=3O。,AB=4,求
4、矩形08EC的周长.6. (2021秋信宜市期中)如图,在菱形43CO中,对角线AGBD交于点、O,过点A作AE_1.8C于点E,延长BC到点尸,使C尸=BE,连接。足(1)求证:四边形AEPo是矩形;(2)若AQ=10,EC=4,求AC和。的长度.7. (2022长沙模拟)如图,已知OABC。,EF为8C边上的垂直平分线,BC=FC=2ABt且NA8O=9(.(I)求证:bABD会4CEF、(2)连接AR请判断四边形48。尸的形状,并说明理由.8. (2021秋开福区校级期末)如图,在矩形ABCO中,点。为边AB上一点,以点。为圆心,QA为半径的(Do与对角线AC相交于点E,连接BE,BC=
5、BE.(1)求证:BE为。的切线;(2)若当点E为AC的中点时,。的半径为1,求矩形ABCo的面积.9. (青竹湖)如图,菱形ABa)对角线交于点0,BE/AC,AEHBD,EO与AB交于点产。(1)求证:四边形AEBO是矩形;(2)若EO=IO,N田4=60。,求菱形ABa)的面积。10. (麓山国际)如图,菱形ABeD的对角线AC,相交于点O,石是AZ)的中点,点尸,G在AB上,EF工AB,OG/EF.(1)求证:四边形O瓦G是矩形;(2)若Ap=I0,EF=4,求。E和BG的长.11. 如图,AC=BC,D是AB的中点,CE/AB,CE=-AB.2(1)求证:四边形CDBE是矩形。若AC
6、=5,CD=3,F是BC上一点,DFBC,求DF长。菱形菱形的判定:三个条件或者“2+1”模式四条边都相等;对角线垂直的平行四边形是菱形;邻边相等的平行四边形是菱形.12. (2022春长沙期中)如图,矩形ABC。的对角线AC8。相交于点O,将OCO沿CQ所在直线翻折,点O的对称点为点E.(1)求证:四边形OCEo是菱形;(2)若NCBo=30。,CD=2,求四边形OCEz)的面积.13. (2022春开福区校级期中)如图,在中,AC=BC,点。、E、产分别是A3、AC.BC的中点,连接。石、DF.(1)求证:四边形OFCE是菱形;(2)若NA=75。,AC=8,求菱形。尸C七的面积.14.
7、(2021秋临沂期中)如图,O为菱形ABCD对角线上一点,以点。为圆心,04长为半径的。与BC相切于点M.(I)求证:CO与。相切;(2)若菱形45C。的边长为1,ZABC=60,求。的半径.15. (2021秋开福区校级月考)如图,O是矩形ABC。对角线的交点,DEAC,CE/BD.(1)求证:四边形OCED是菱形:(2)若NAO=120。,DE=31求菱形OCEO的面积.16. 如图,在RtZk48C中,ZCB=90o,。为A8的中点,AE/CD,CE/AB.(I)证明:四边形A。CE是菱形;(2)若NB=600,BC=6,求菱形A。CE的高.(计算结果保留根号)17. (2021秋雨花区
8、校级月考)如图,在四边形ABCo中,AC,BD交于O点,ADBC,BA=BC,BD平分NABC(1)求证:四边形ABCO是菱形;(2)延长BC至点E,使。EAC,若BC=5,BD=S,求四边形A3E。的周长.18. (2021秋长沙期末)如图,将菱形ABCQ的对角线AC向两个方向延长,分别至点E和点产,且使AE=CF.(1)求证:四边形EBF。是菱形;(2)若菱形EBFo的对角线BD=10,EF=24,求菱形EBFO的面积.19. (2022长沙一模)如图,在AABC中,点。,点七分别是边AC,A8的中点,点尸在线段OE上,ZAFB=90o,FGAB交BC于袅G.(1)证明:四边形EFGB是菱
9、形;(2)若A尸=5,BF=12,BC=19,求。尸的长度.C20. (雅礼)如图,菱形ABCD的对角线AC、8。相交于点。,BEIlAC,AEHBD,OE与A8交于点F.(1)试判断四边形AEBO的形状,并说明理由;(2)若OE=5,AC=8,求菱形ABCO的面积.21. (2022春长沙期中)如图,在平行四边形ABC。中,以点A为圆心,AB长为半径画弧交A。于点R再分别以点8,尸为圆心,大于ZF的长为半径画弧,两弧交于一点P,连接AP并延长交BC于点E2连接EE(1)求证:四边形ABE尸是菱形;(2)设AE与B尸相交于点0,四边形ABE/的周长为24,BF=6,求四边形ABE尸的面积.22
10、. (广益)如图,在矩形ABC。中,对角线8。的垂直平分线MN与AD相交于点M,与BC相交于点N,连接8W,DN.(1)求证:四边形BMrW是菱形;(2)若A8=4,D=8,求MD的长.23. (师大)如图,在四边形ABCD中,ADBC,AB=BC,对角线AC、BD交于点O,BD平分NABC,过点D作DE_1.BC,交BC的延长线于点E,连接OE.(1)求证:四边形ABCD是菱形;(2)若DC=2遥,AC=4,求OE的长.24. (2022长沙一模)如图,已知E、尸是矩形ABC。对边A3、。的中点,连接ER点G是边AO上一动点,连接8G交E产于点H,连接AH,过点A作AP_1.8G交E尸于点P
11、.(1)求证:AH=HG;(2)连接8P、PG,若BPuG,求证:四边形A”PG为菱形:(3)在(2)的条件下,若4B=45,求48PH的面积.25. (2012天水)如图所示的一张矩形纸片CO(4QAB),将纸片折叠一次,使点A与C重合,再展开,折痕E尸交A。边于点E交BC边于点凡交AC于点。,分别连接A尸和CE(1)求证:四边形AFe石是菱形;(2)过E点作AO的垂线EP交AC于点P,求证:2AE2=ACAP;(3)若AE=Iocm,AAB/的面积为24Cm2,求AB尸的周长.正方形26. (2021秋雨花区校级月考)如图,正方形ABCO中,点E,尸分别在A。,CO上,且。E=C/,AF与
12、BE相交于点G.(1)求证:BE=AF;(2)若A4=8,OE=2,求AG的长.27. (长沙中考)如图,已知正方形ABCD中,BE平分NDBC且交CD边于点E,将BCE绕点C顺时针旋转到ADCF的位置,并延长BE交DF于点G.(1)求证:4BDGsZDEG;(2)若EGBG=4,求BE的长.A1J)28. (雅礼)如图,在正方形ABCD中,点E,F分别在边AB,BC,ZADE=ZCDE(1)求证:AE=CF;(2)连接DB交EF于点0,延长OB至点G,使OG=OD,连接EG、FG,判断四边形DEGF是怎样的四边形,并说明理由。29. (广益)E、尸分别为正方形ABC。的边A3、BC的中点,4斤分别与。石、30相交于点M、N(1)求证:MDE=ABAF;(2)若A3=2,求AM的值;(3)求tanNMIW的值。30. (2022开福区校级一模)如图,在正方形ABC。中,点M是边BC上的一点(不与8、C重合),将线段AM绕点A顺时针旋转90。得到AM连接OMMN、AC,MN与边A。交于点E,与AC相交于点O.(1)求证:ZiABMgZiAQN;(2)当AM平分NBAC时,求证:AM2=AOAE;(3)当CM=38M时,求Qt的值.OE