专题5.8 分式与分式方程章末八大题型总结(培优篇).docx

上传人:p** 文档编号:1007003 上传时间:2024-06-15 格式:DOCX 页数:5 大小:23.26KB
下载 相关 举报
专题5.8 分式与分式方程章末八大题型总结(培优篇).docx_第1页
第1页 / 共5页
专题5.8 分式与分式方程章末八大题型总结(培优篇).docx_第2页
第2页 / 共5页
专题5.8 分式与分式方程章末八大题型总结(培优篇).docx_第3页
第3页 / 共5页
专题5.8 分式与分式方程章末八大题型总结(培优篇).docx_第4页
第4页 / 共5页
专题5.8 分式与分式方程章末八大题型总结(培优篇).docx_第5页
第5页 / 共5页
亲,该文档总共5页,全部预览完了,如果喜欢就下载吧!
资源描述

《专题5.8 分式与分式方程章末八大题型总结(培优篇).docx》由会员分享,可在线阅读,更多相关《专题5.8 分式与分式方程章末八大题型总结(培优篇).docx(5页珍藏版)》请在第壹文秘上搜索。

1、专题5.8分式与分式方程章末八大题型总结(培优篇)【北师大版】【题型1分式有意义的条件】1【题型2利用分式的基本性质解决问题】1【题型3分式的化简求值】2【题型4比较分式的大小】2【题型5解分式方程的一般方法】3【题型6裂项相消法解分式方程】4【题型7利用通分或约分代入求分式的值】5【题型8利用倒数法求分式的值】5【题型1分式有意义的条件】例I(2023下河南南阳八年级校联考阶段练习)下列各式中,无论取何值,分式都有意义的是()A.;B.C.罕D.X2+53x+2X22X-1【变式1-1(2023下山西太原八年级统考期末)下列X的值中,使分式三无意义的是()A.%=3B.X=-3C.X=2D.

2、x=-2【变式1-2(2023下河南南阳八年级统考期中)当X=2时,分式Ea没有意义,则M的值等于()x+mA.-2B.-3C.2D.3【变式1-3(2023上上海浦东新八年级上海市民办新竹园中学校考阶段练习)已知y=V-,无论X取Jx2+2x-c任何实数,这个式子都有意义,则C的取值范围.【题型2利用分式的基本性质解决问题】【例2】(2023下河南南阳八年级统考期中)下列代数式变形正确的是()A2+l2ar.x-y-x+yC0.2X2xaa2A.-=B.=C.=D.=b+lbx+yx+y0.1x+2yx+2ybb2【变式2-1(2023下重庆万州八年级重庆市万州第一中学校联考期中)把分式守的

3、彳、y均缩小为原来Xy的10倍后,则分式的值()A.为原分式值的VB.为原分式值的工C.为原分式值的IO倍D.不变【变式2-2(2023上重庆北硝八年级统考期末)将言-常竺二1的分母化为整数,得()CXO.5+O.OlxCU5O+X1C.=100D.5%=12033【变式2-3(2023下江苏南京八年级校联考期末)若分式空的值为6,当小),都扩大2倍后,所得分式x-y的值是.【题型3分式的化简求值】【例3】(2023下江苏盐城八年级景山中学校考期中)先化简,再求值:(9+)+麦,其中X满足/+2x-2026=0【变式3-1(2023上湖南岳阳八年级统考期中)先化简,再求值:(岩+5)衰驾T其中

4、一1%V2且X为整数.请你选一个合适的X值代入求值.【变式3-2(2013重庆中考真题)先化简,再求值:(F-E)+/,其中X是不等式3x+7l的负整数解.【变式33】(2023上广西柳州八年级校考期中)已知第2-IOx+25与y-3|互为相反数,求供)立A的值.ysx+y【题型4比较分式的大小】【例4】(2023河北石家庄统考二模)要比较A=含与B=等中的大小(X是正数),知道A-8的正负就可以判断,则下列说法正确的是()A.ABB.ABC.ABD.A0,比较A与B的大小关系.【变式4-2(2023上河北唐山八年级统考期末)由(点一3值的正负可以比较A=瞪与的大小,下列正确的是()A.当c=

5、-3时,力=1B.当C=O时,4C.当CV-3时,|D.当CVO时,%2)时所对应的值,试比较(Xl-2)+g-2)2X-2p、q的大小,说明理由.【题型5解分式方程的一般方法】【例5】(2023上湖北恩施八年级统考期末)解下列方程:=至Q脸T=(AI短2)【变式5-1(2023下浙江绍兴八年级统考期末)如图所示的解题过程中,第步出现错误,但最后所求得的值与原题的正确结果一样.则图中被污染掉的工的值是.x4问题:先化简,再求值:+1,5-X其中尸-4解:原式0r)+(5r)=-4+5-=1【变式5-2(2023上湖南怀化八年级校考期中)解下列分式方程(1篇=20:(2七+=1.【变式5-3(2

6、023上河南省直辖县级单位八年级校联考期末)同学们,在学习路上,我们犯各种各样的错误是在所难免的.其实,这些错误并不是我们学习路上的绊脚石.相反,如果我们能够聚焦错误、分析错误、发散错误以及归类错误,那么我们就能够以错误为梯,补齐短板,进而大幅提升学习效益.小王在复习时发现一道这样的错题:解方程:I-黑=三解:-=三1(x+3)=-4%1-X-3=-4x-X+4x=-1+33%=2X=j(1)请你帮他找出这道题从第步开始出错;(2)请完整地解答此分式方程;(3)通过解分式方程,你获得了哪些活动经验?(至少要写出两条)【题型6裂项相消法解分式方程】例6(2023上广东珠海八年级统考期末)李华在计

7、算时,探究出了一个“裂项”的方法,11AA+A=1Z2334i-;+-1+|-i=i-z=p利用上面这个运算规律解决以下问题:2233444(D求+z+的值;566778(2)证明:+-+I-11:122334(n-l)nn(n+l)(3)解方程:;3xISx35X63xx+1【变式6-1(2023下安徽滁州八年级校考阶段练习)解方程:-7+-11+-=7.x(x+3)(x+3)(x+6)(x+6)(x+9)2x+18【变式6-2(2023下安徽六安八年级六安市第九中学校考阶段练习)解方程:-+-+-+1 _2(X+98)(X+1OO)-X+100,【变式63】(2023上上海浦东新八年级校考

8、阶段练习)化简下式:(I)X(X+1)+(x+l)(x+2)+(x2004)(x+2005)(2)+-1+-jX2-4x+3X2-IX2+4x+3X2+8x+15(3)分式方程+,一=1的解是(请直接写出答案)x(x+2)(x+2)(x4)2X【题型7利用通分或约分代入求分式的值】【例7】(2023下江苏泰州八年级校考阶段练习)已知:-三=3,则分式誓R的值为.ba4ab-3a+6b【变式71】(2023湖南武冈市第二中学八年级阶段练习)若h的值为J则42:Cl的值为()2y2+3y+784y2+6y-9A.-B.-C.-D.2277【变式7-2(2023湖南邵阳八年级期末)已知+:=2,那么

9、分式空言Y的值是.【变式7-3(2023下安徽宿州八年级统考期末)已知乙-:=3,求3。+:?-J分式的值为.aba-2ab-b【题型8利用倒数法求分式的值】【例8】(2023上湖北咸宁八年级统考期末)【阅读理解】阅读下面的解题过程:己知:品二,求总的值.解:由岛=1知*0,,子=3,即+:=3.=1=/+=(%+邛-2=32-2=7,故圣的值为X2X2X)X4+l7(1)第步由子=3得到+:=3逆用了法则:;第步/+妥=1+丁-2运用了公式:;(法则,公式都用式子表示)【类比探究】(2)上题的解法叫做“倒数法”,请你利用“倒数法”解决下面的问题:已知TJ=-1,求4I的值;x2-3x+1x4-7x2+1【拓展延伸】(3)已知工+:=(,U1+1=求的值ab6bc9ac15ab+bc+ac【变式8-1(2023山东滨州八年级期末)(1)已知实数。满足+三=5,求分式aQ的值3a,+5a+3(2)已知实数b满足b+=9,求分式的值.ft+1配+5b+5【变式8-2(2023下江苏苏州八年级校考开学考试)利用“倒数法”解下面的题目:已知:丸=;求:(D代数式+1的值.(2)代数式工的值.【变式8-3】(2。23上山东烟台八年级统考期中)若忌=1,求心的值

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 中学教育 > 试题

copyright@ 2008-2023 1wenmi网站版权所有

经营许可证编号:宁ICP备2022001189号-1

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。第壹文秘仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知第壹文秘网,我们立即给予删除!