控制工程基础第三章参考答案.docx

上传人:p** 文档编号:1025595 上传时间:2024-06-15 格式:DOCX 页数:29 大小:278.05KB
下载 相关 举报
控制工程基础第三章参考答案.docx_第1页
第1页 / 共29页
控制工程基础第三章参考答案.docx_第2页
第2页 / 共29页
控制工程基础第三章参考答案.docx_第3页
第3页 / 共29页
控制工程基础第三章参考答案.docx_第4页
第4页 / 共29页
控制工程基础第三章参考答案.docx_第5页
第5页 / 共29页
控制工程基础第三章参考答案.docx_第6页
第6页 / 共29页
控制工程基础第三章参考答案.docx_第7页
第7页 / 共29页
控制工程基础第三章参考答案.docx_第8页
第8页 / 共29页
控制工程基础第三章参考答案.docx_第9页
第9页 / 共29页
控制工程基础第三章参考答案.docx_第10页
第10页 / 共29页
亲,该文档总共29页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

《控制工程基础第三章参考答案.docx》由会员分享,可在线阅读,更多相关《控制工程基础第三章参考答案.docx(29页珍藏版)》请在第壹文秘上搜索。

1、第三章习题及答案3-1.假设温度计可用1min阻何万时间是多少?传递函数描述其特性,现在用温度计测量盛在容器内的水温。发现需要Ts+试问该温度计指示出实际水温从10席变化到90%所需的解:4T=lmin,T=0.25minAz(G=I-e=0.1,r1=-Tln0.9z(r2)=0.9=1-et2=-Tln0.109t=t,-t,=Tln-=2.2T=0.55minr2,0.12.已知某系统的微分方程为y”(f)+3VQ)+2=Q)+3(f),初始条件),(0_)=1,/(0J=2,试求:系统的零输入响应*);激励F(157M(D时,系统的零状态响应yf(t)和全响应y(t);激励F(,)5e

2、237M(D时,系统的零状态响应Ra)和全响应y()。1=A1+A22=A2A,解:(D算子方程为:(pl)(p+2)X0=(P+3)/(0.yx(t)=AeT+e-2=yx=4e-z-3e-2t/0_;”(p)=W一_1.=h(t)=(2e-e-适p2+3p+2p+1P+2力(0=力*=(-2e-z+ae2r)“)XO=y+yf=(+2e-z-1e2z)(t)yf(t)=h(t)*e-3t(t)=(ez-e,把XO=yx+yf=(5e-J4e-2%(f)3.已知某系统的微分方程为y*Q)+3yQ)+2y(f)=TQ)+3(f),当激励/飞47时,系统的全响应XO=(ye-r-e2zo试求零输

3、入响应切(E)与零状态响应.(,)、自由响应与强迫响应、暂态响应与稳态响应。解:H)=2与3C=-f-,h(t)=(2et-e-2t)(t),p12304=06100011231=602=612-l10=6203=61210-663-10l10=51204=33=3512=15360所以,此系统是稳定的。5,试确定下图所示系统的稳定性.+3p+2P+1P+2yf(t)=fe-4r2e-2t-yd(t)=je(l-e)-e-2,(l-e-2z)k(0=(-e4f-le)(零状态响应)623yx(O=y(t)-yf(t)=(4e-z-3e2z)f(r)(零状态响应)强迫响应:TeTz;自由响应:(

4、e-z-e-2zXz);OJZMr)全为暂态,不含稳态响应.4.设系统特征方程为:$4+6/+12+1(19+3=0。试用劳斯-赫尔维茨稳定判据判别该系统的稳定性。解:用劳斯-赫尔维茨稳定判据判别,a=1,Sa=6,a2=12,a=10,ao=3均大于零,且有61000(b)解:伍).G(三)=-105(5+1)2sX10+s(s+l)10(5+1)52(5+21)ZXS)=52(5+21)+10(5+l)=53+21?+105+1RoUihd1012111210-1八5,021$。1系统稳定。10小Ks(s+2)10w)=l10(10.l)=r102s105(5+2)D(三)=S2+102s

5、+10满足必要条件,故系统稳定。6.已知单位反馈系统的开环传递函数为G(三)5(0.01.r+0.2v+l),试求系统稳定时,参数K和J的取值关系。解:D(三)=5(0.0k2+0.2s+1)+=0D(三)=5320s2+1005+100Jl=O100Routh:s3s2200I(XRSl2000J-10(R()20s100AOR0k由左。步表第一列系数大于O得7O,即*0次0)攵20J47 .设单位反馈系统的开环传递函数为G(三)=,要求闭环特征根的实部均小于5(1+0.25)(1+0.15)-1,求K值应取的范围。解,系统特征方程为S(1.0.2S)(I+0.k)+K=O要使系统特征根实部

6、小于-1,可以把原虚轴向左平移一个单位,令W=S+1,即s=w-l,代入原特征方程并整理得0.02M+0.24M+0.46Vp+K-0.72=0运用劳斯判据,最后得0.72K6.24八2一/、8 .设系统的闭环传递函数为6(三)=,T,试求最大超调量。;9.6%、峰值时间s2nsntp=O.2秒时的闭环传递函数的参数;和3n的值。一切解:b%=egl=9.6%=0.6*tp=0.2n71-2:n=11=i9.6radStpl-20,2l-0.62259.设单位负反馈系统的开环传递函数为Gk(三)=-S(S+6)求(I)系统的阻尼比和无阻尼自然频率n(2)系统的峰值时间tp、超调量。、调整时间r

7、=o.02);25解:系统闭环传递函数Gs(三)=Ns:?=?”I+八S(S+6)+25s+65+25S(S+6)与标准形式对比,可知21=6,可=25故吗=5,=0.6又wrf=Wnl-2=5l-0.62=4二=X=O785P必4二-0.6;T%=e口100%=100%=9.5%44=1.3310 .阶系统结构图如下图所示。要求系统闭环增益K(I)=2,调节时间40.4s,试确定参数K,Kz的值。图3-45系统结构图解由结构图写出闭环系统传递函数1Kl.兀+KK+1KR令闭环增益K=-=2,得:K2=0.53令调节时间4=37=0.4,得:K.15oKK11 .设某高阶系统可用下列一阶微分方

8、程:TR)+c(f)=汇;)+)近似描述,其中,0(T-r)lo试证系统的动态性能指标为:(T-T-td=0.693+In-T;tr=2.2T;ts=3ln(-)T,1丁1.T-解设单位阶跃输入R(三)=1.s当初始条件为0时有:%=XllR(三)Ts+1、ZS+111T-:.C(三)=75+15S75+1C(Z)=hit)=1TT%l1)当f=%时人=0.5=1-土二iTT.%=in2+ln(一)2)求。(即CQ)从0.1到0.9所需时间)当(r)=0,9=1一eT2,7;t2=7Tln(三)-lnO.l当(r)=0.1=-e,f;tl=Tnn(Z)-InO.909则C=Z2-r1=Hn-=

9、2.273)求tsW)=O.95=1-e-,tits=TnnIn0.05=+In20=73+In12 .已知系统的特征方程,试判别系统的稳定性,并确定在右半S平面根的个数及纯虚根。(1) D(三)=d+2s4+2+452+lk+10=0(2) D(三)s5+3/+12/+24,/+32s+48=0(3) D(5)=55+2-5-2=0(4) D(三)=J5+Zv4+24/+4Kv2-255-50=0解(1)D(三)=55+2s4+2s3+4s2+11.y+10=0Routh:S5S4S3S2SS0第一列元素变号两次,122464-12e10610有2个正根。1110(2)D(三)=55+3/1

10、2v3+2452+32v+48=0S432448S3S2S3x12-243=432x3-48”10424-316IC=124481216-448C=0120辅助方程12?+48=0,Routh:S511232S048系统没有正根。对辅助方程求解,得到系统一对虚根$1,2=j2。(3)D(三)=SF/一$一2=0Routh:S510-1S420-2辅助方程254-2=0S380辅助方程求导81=0S2-2S6S0-2S24辅助方程求导:24S=O第一列元素变号一次,有1个正根;由辅助方程2/-2=0可解出:2-2=2(s+1)(5-1)(5+js-j)D(三)=55+2s4-S2=(S+2)(S

11、+1)(5-I)G+J)Gj)(4)D(三)=S5+2+24+48d-25s-50=0Routh:S5124-25S4248-50辅助方程2+42-50=0S3896辅助方程求导8?+965=0S224-50S338/3S0-50第一列元素变号一次,有1个正根;由辅助方程2/+48-50=0可解出:2s4+4&v2-50=2(5+I)(S-I)(S+/5)(S-/5)D(三)=s5+2s4+24s3+482-25s-50=(s+2)(5+I)(S-1)(5+J5)(s-5)13 .已知单位反馈控制系统开环传递函数如下,试分别求出当输入信号为1(。、,和”时系统的稳态误差。G(三)10(0.k+

12、l)(0.5s+l)G(三)=7(5+3)5(5+4)(?+25+2)解:(1)G(三)=10(0.15+1)(0.55+1)K=IOv=0D(三)=(O.1.v+1)(0.55+1)+10=0经判断系统稳定)=1A1e1+7CTTr(r)=fr()=产e=:e.Mm1.2)“7x321K=4x28v=lD(三)=SG+4)(s2+2v+2)+7(5+3)=0经判断:系统不稳定。14 .己知单位负反馈系统的开环传递函数如下:、100GK(三)=K5(5+2)求:(D试确定系统的型次V和开环增益K;(2)试求输入为r(f)=l+3f时,系统的稳态误差。解:(1)将传递函数化成标准形式GK(三)=

13、10050S(S+2)s(0.5s+1)可见,v=l,这是一个I型系统开环增益K=50;(2)讨论输入信号,r(f)=l+3f,即A=l,B=3误差分J-=1+勺Kv1+3+=0+0.06=0.065015 .已知单位负反馈系统的开环传递函数如下:/、2GK(三)=252(5+0.1)(50.2)求:(1)试确定系统的型次V和开环增益K;(2)试求输入为1)=5+2,+4/时,系统的稳态误差。解:(1)将传递函数化成标准形式、2100GK(三)=-5=-2s2(s+0l)(5+0.2)52(111V+1)(5S+1)可见,v=2,这是一个II型系统开环增益K=Io0;(2)讨论输入信号,*f)=5+2f+4产,即A=5,B=2,C=4误

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高等教育 > 习题/试题

copyright@ 2008-2023 1wenmi网站版权所有

经营许可证编号:宁ICP备2022001189号-1

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。第壹文秘仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知第壹文秘网,我们立即给予删除!