LISP 语言在CAD 道路设计中的各种应用.docx

上传人:p** 文档编号:1058160 上传时间:2024-06-29 格式:DOCX 页数:10 大小:38.03KB
下载 相关 举报
LISP 语言在CAD 道路设计中的各种应用.docx_第1页
第1页 / 共10页
LISP 语言在CAD 道路设计中的各种应用.docx_第2页
第2页 / 共10页
LISP 语言在CAD 道路设计中的各种应用.docx_第3页
第3页 / 共10页
LISP 语言在CAD 道路设计中的各种应用.docx_第4页
第4页 / 共10页
LISP 语言在CAD 道路设计中的各种应用.docx_第5页
第5页 / 共10页
LISP 语言在CAD 道路设计中的各种应用.docx_第6页
第6页 / 共10页
LISP 语言在CAD 道路设计中的各种应用.docx_第7页
第7页 / 共10页
LISP 语言在CAD 道路设计中的各种应用.docx_第8页
第8页 / 共10页
LISP 语言在CAD 道路设计中的各种应用.docx_第9页
第9页 / 共10页
LISP 语言在CAD 道路设计中的各种应用.docx_第10页
第10页 / 共10页
亲,该文档总共10页,全部预览完了,如果喜欢就下载吧!
资源描述

《LISP 语言在CAD 道路设计中的各种应用.docx》由会员分享,可在线阅读,更多相关《LISP 语言在CAD 道路设计中的各种应用.docx(10页珍藏版)》请在第壹文秘上搜索。

1、第三章1.ISP语言在CAD道路设计中的各种应用1.1 绘制平面随意函数加战的AutoUSP程序设计在各个工程设计领域中,常常要绘制一些曲线,特殊是平面曲线,如水工结恸的湎流曲线、机械设计的齿轮渐开曲线等.在AUtOCAD绘图软件中,可以将曲线上的点先计算好.再用莲、多义线、样条曲线等方法绘制,这种方法须要进行大麻计算,工作量较大,假如用EXCE1.软件来协助计算,可以减轻工作眼:另外,可以针对详细的曲线类型,fllAutoCAD内嵌的AUtoUSP语言,实现边计算边绘制的功能。用这种方法绘制虽然快拢,但对于不同的曲线,则褥塘写同的AUto1.lSP程序,检查无误后才能运行,仍显繁琐.能否用统

2、一的程序,来实现各种平面函数曲线的绘制,我们尝试利用AUtOCAD中强大的发达式计号功能来实现这一目的,1.1.1 平面函数曲城的类皇和绘制方法平面函数曲线即是有简洁函数表达式的曲线类型,可考虑常常遇到的4类:(I)直用坐标下形如y=f(x)的曲线:(2) Il角坐标下的舂散方程曲线;(3)极坐标卜形如1.RO)的曲线:(4)极坐标下的参数方程曲线.其中,只制增加一个平凡方程x=x,参数方程2)就可以包括相应的干脆表达形式(I),同样(4可以包括(3)。【可时,极坐标形式可以通过:x-rcosOy=rsin转换为直角坐阮表达.因此从本质上说,4种类型都可以相互转换.把它们分类的目的是尽收采纳函

3、数的通常去达形式,以便于运用,绘制时,叁照曲戏的手工绘制方法,须要给出他线上的多个点,然后将它们连接起来。若给出的点间做很小,干腌用折线段相连就可很好模拟该曲线,假如间隔较大.可以用样条曲线连接.使之比较光甜.假设我们计算出足酩多的点,简洁用折线连接即可,为使该曲线成为一个整体.可用多义线的方式连接.关键的问题是,如何计算出曲跷上点的坐标。由于曲规的函数表达式各种各样,不行能用统一的式子来表示可以考虑从外部输入表达式,然后针对该表达式进行计算,给出相应结果,就能够解决点坐标的计算问遨.但这个功能的实现比较困难,幸好AUtoCAD为我俏供应了CA1.吩咐.可以对以!意的表达式进行计算.该吩咐由函

4、数嫁文件geomcalarx供应,支持科学/工程计算器上的大多数标准函数,如三角函数、指数、对数等,若表达式中有变I礼而该变讹在程序中己设定了值,则按该值进行计算由于该函数不是1.lSP内部南数,为使之可用,须要用ARX1.oAD吩咐我入文件gcomcal.arx,或书在吩咐行先输入CA1.吩咐,由系统自动领入.这样,程序中就可以运用该函数了.总的程序定义为c:CUrVC0,以使在AutoCAD吩咐行中与通常的吩咐一样运用.程序的总调用部分为:(arxloadgcomcal.arx):载入供应表达式计算功能的ARX文件(vl-arx-import*c:cal):It吩咐c:CaI能好运用(Pr

5、inC直角坐标下曲镂y=f(x).n)(PrinC(2)直角坐标下参数曲般x=f(i),y=g(i).n)(PrinC(3)极坐标卜曲线r=f(thcia).n)(PrinC(4)极坐标下参数曲线thcta=f(i)j=g(i).n)(SetqiChoiCe(getim选择处制曲线类型:):选择曲跷类型(if(=ichoiceI)(CUrVe1;调用曲线绘制类型1(if(=ichoice2)(CUrVC2:调用曲线绘制类型2(if(=ichoicc3)(CUrYe3):调用曲线绘制类型3(if(=ichoicc4)(CUrVe4):-用曲线绘制类型4依据用户选择的曲畿类型,转到相应的曲规类型绘

6、制函数中,依次为直角坐标下的般函数、参数方程,极坐标下的一般函数和参数方程,1.1.2 直角坐标下函数y=f(x)的曲线绘制直角坐标下绘制函数曲线y=f(x)定义为Auto1.ISP子程序curxcl,该子程序没有传入传小参数,程序的第一个步骤是读入有关的参数和限制变;匕首先读入y=Rx)的表达式,然后输入自变量X的变更范用low.up,接着依据模拟精度,输入曲城剖分数目StePs,X的变更步长即为stcp=(up-lowtcps.该步骤相应的AUto1.lSP程序如下:(sctquny(estringy=f(x)W达式:)(SCtqIowfgctrcalx的下限(ft:)(setqup(ge

7、trealx的上限伯:)(SeIqSteps(getint剖分数Il:)(sctqSteP(/(-uplow)steps)接下来就起先曲线的绘制,首先启动绘制多义践的吩咐,接着自变显X从下限值起先,由f(x)的表达式计算y坐标值,将该点的坐标输入到吩对行,得到曲线的起点,然后自变MX递墙一个步长,计算下一个坐标点,曲城连接到该点,如此内到例分数目结束,就完成了整个曲线的绘制,最终用一个空格退出多义线吩咐.相应的AUtO1.lSP程序如下:(commandplinc):启动多义线吩咐(Setqii0);循环变革ii设初值(setqXIOW):自变吊:x设初值(while(=iisteps):限制

8、循环数目(sctqy(cxalIuny):对表达式进行计算,得到y坐标值(command(listxy):输入计算出的点坐标(SeIqii(+Iii):循环变量ii增加I(SetqX(+Xstep):内变IftX递增一个步长(command):退出多义线吩咐1.1.3 口角坐标下参数方程曲线绘制白角坐标卜参数方程与干脆函数表达不同的是,引入参变量,坐标X和y部表达为该参变量的函数,这样,旎够表示的函数更敏捷多样,形式如下:在曲线绘制时.只球要将变量改为参变Jit,坐标计算时对x、y坐标都用友达式计?Z即可,相应的AUJSP程序如下:(setqii0);循环变城ii设初值(SeIqiIOW):参

9、变量i设初值(while(=iisteps):循环限制(sctqX(c:CalfUnX):由x=f(i)计算坐标X(setqy(c:CalfUny);由y=g(i)计算坐标y(Commanddistxlyh):向吩咐行输入点坐标(sctqii(+Iii):循环变Iitii增加I(sctqi(+istep):参变麻i递增一个步长极坐标下函数r=fW曲绘制极坐标卜的数r=110)的不同之处在于添人点的坐标时,须要用极坐标输入方式,如2(X30.表示极径为20.%度为30%可以将得到的坐标(ft转换为字符串再用角度符号“Vr连接起来,输入到吩咐行.也可以用另外一个简便方法,即利用极坐标和直角坐标之间

10、的转换关系,变换到fl角坐标后输入到吩咐行,该方法对应的Auto1.ISP程序如下:(SelqiiO)(Setqek)W):设置极角0的初始值(while();对极角递增一个步长1.1.5 极坐标下参数方程曲线绘制极坐标下参数方程曲线的绘制,同直角坐标下的参数方程曲筏绘制是类似的,即增加-个用卷变量表达的极角的计能,相应的AUto1.lSP程序如下:(SetqiiO)(SetqiIow);设置参变量i初值为下限值(while(=iisteps)(sctqc(cxalIunx):一表达式计算极角0(sctqr(cxalfuny):由龙达式计算板径r(setqX(c:calr*cos(e)(se(

11、qy(cxalrsin(e)(command(listxy)(SeIqii(+1ii)(SeIqi(+istep)s参变量递增一个步长31.6总结利用AUtOCAD的表达式计分功能,编写出绘制平面函数曲税的AutoIJSP程序,依加外部输入的函数表达式,快速注制出函数曲跳,且可以敏捷限制曲线的模拟精度,避开了以往年绘制一种曲戏都要重新编写程序的麻烦,运用起来特别便利可以参照本文的做法,绘制三维空间曲线或其他更困难的曲线.或将表达式计算功能应用到其他设计环境中.1.2 AtTAutoCAD的戏路谖和曲战的自动绘制1.2.1 背景铁路与q路的线路在定线中由于受地形、地物或其他因素限制,须要变更方向

12、.在变史方向处,相部两宜纹间要求用曲线连接起来,以保证行车顺畅平安这种曲税法平面曲税.铁路与马路途上来纲的平面曲tu主要有圆曲戏相缓和曲翅,如图I所示。圆曲戊是具有肯定曲率半径的明如:缓和曲戏是连接曲城与圆曲线的过渡曲线,其曲率半径P由无穷大(H战的半径)渐渐变更为掰曲线半径R,在铁路干线线路中盘要加设媛和曲线.由于缓和曲线上各点的曲率半径及圆心均为变数.所以在绘制线路平面图时,利用绘图工具无法精确、有效地绘制出缓和曲溃,目前大多数采纳他戏板近似描绘谖和曲线:或者是在AUtoeAD中,用多段线近似代替缓和曲线。这些方法作图不精确,而且作图效率低,笔者在实践中,利用Auto1.ISP煽程.实现了

13、基于AutoCAD的线和曲线加网曲线的自动绘制.1.2.2 级和曲线的主点及要素1 .缓和曲线的形成图2(b)是没有加设缓和曲戏的即曲线,殴和曲线是在不变更直线段方向和保持队!曲线半径不变的条件下,插入到网曲线与直城段之间的平面曲线.为/在圆曲线与直线之间加入一段缓和曲线10.原来的阴曲线须要在垂直于其切观的方向上移动一段距成p(见图2(八)),因而即心就由O移动到01,而原来的半径R保持不变,2 .馍和曲线的主点ZH直线点.HY援圆点,QZ曲中点,YHKI馈点.HZ缓点点.即直线与线和曲线的分界.点:即慑和曲线与18曲线的分界点:即圆曲践的中点;即圆曲线与缓和曲线的分界点:即缓和曲线与出线的

14、分界点:JD一两直级廷长线的交点.3,缓和曲线的综合要素T切成长,即交点至百缓点或缓宜点的宜城长度:R同曲线半径:1.曲线(圆曲税+缓和曲浅的长度:Ol缓和曲战的长度:EO一外矢距,即交点至曲线中点的距离(JD至QZ的距离)转向角.即H线转向角:OP缓和曲线的切线角,即缓圆点HY(或暇缝点YH)切税与直线点(或缓宜点HZ)切线的交角,亦即KI曲战HY-YH两端各延长201部分所对应的圆心角;m切垂距,即ZH(SlcHZ)至自IB心Ol向ZH点或IIZ点的切线作垂垂重足的距离.P圆曲场移动限.即垂线长与圆曲规半径R之差.在上述要素中,a,R,IO为己知要素(可依据实际测定或在践路设计时选定),其

15、他要索需依据a,R,IO求得.它们的关系为4 .缓和曲线方程式由于獴和曲线的曲率半径P从直线的曲率半径(无穷大渐渐变更到圆曲线的曲率半径R,在曲线上任一点P的曲率半径P与曲戏的长度I成反比,如图3所示,以公式表示为式中C为常数,称曲率半径变更率.设B为缓和曲线上任一点的切线角,X,y为这一点的坐标,P为这一点上曲线的曲率半径,I为从ZH点到这点的缓和曲线长(见图3)“则有图3缓和曲税上任一点的坐标5 .缓和曲线用数m切垂距,即ZH(或HZ)至自Bl心.Ol向ZH点或HZ点的切然作垂垂垂足的距离.P一圆曲税移动Ii1.即垂线长与圆曲线半径R之差.1.2.3 用曲线和缓和曲战的绘制1 .绘制馈和曲战假设两面城的转角为逆时针方向.则自原点(ZH)至交

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 外语学习 > 日语学习

copyright@ 2008-2023 1wenmi网站版权所有

经营许可证编号:宁ICP备2022001189号-1

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。第壹文秘仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知第壹文秘网,我们立即给予删除!