第十七章反比例函数的综合复习-33.docx

上传人:p** 文档编号:1102297 上传时间:2024-07-24 格式:DOCX 页数:11 大小:108.56KB
下载 相关 举报
第十七章反比例函数的综合复习-33.docx_第1页
第1页 / 共11页
第十七章反比例函数的综合复习-33.docx_第2页
第2页 / 共11页
第十七章反比例函数的综合复习-33.docx_第3页
第3页 / 共11页
第十七章反比例函数的综合复习-33.docx_第4页
第4页 / 共11页
第十七章反比例函数的综合复习-33.docx_第5页
第5页 / 共11页
第十七章反比例函数的综合复习-33.docx_第6页
第6页 / 共11页
第十七章反比例函数的综合复习-33.docx_第7页
第7页 / 共11页
第十七章反比例函数的综合复习-33.docx_第8页
第8页 / 共11页
第十七章反比例函数的综合复习-33.docx_第9页
第9页 / 共11页
第十七章反比例函数的综合复习-33.docx_第10页
第10页 / 共11页
亲,该文档总共11页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

《第十七章反比例函数的综合复习-33.docx》由会员分享,可在线阅读,更多相关《第十七章反比例函数的综合复习-33.docx(11页珍藏版)》请在第壹文秘上搜索。

1、课程信息年级初二I学科I数学版本人教新课标版课程标JK第十七章反比例函数的综合更习稿者如何莹娟一校李秀却I二林卉*tt孙永涛一、学习目标:1 .掌握反比例函数的图象和性防.2 .会处理一次函数和反比例函数的综合问应.3 .通过对反比例函数性麻的再探索、拓展,构建反比例函数的性质与几何图形间的联系,并能运用其解决一些简单的问越.重点、点:I.通过对确定函数解析式的方法的探究,学会特定系数法在解析几何中的应用以及通过数形站合法来探索函数问题。2.反比例函数的性质.三、考点分析,知识点:反比例函数的.旗义:反比例函数:反比例函数图象:反比例函数性质:特定系数法确定陶数解析式.考杳杀点:(1)确定反比

2、例函数表达式;(2)画反比例函数的图象;(3)用反比例函数解决某些实际问嫄利识佛理1 .正比例函数的解析式:.图般是性质:2 .一次函数的解析式:图象是性冲3 .反比例函数的解析式:.图望是性质:4 .反比例函数的几何性防S电眼=网S,=;A1.典重例题M1.如图,函数y=3叮y=-kx+1.(kKO)在同一坐标系内的图象大致为I思路分析:1) 意分析:此题考本反比例函数和一次函数的图象和性质2) jWSM:此题考杳反比例函数图象与性质的应用,因为一次函数y=-kx+1.与y轴的交点为(O.I),所以结论B和C都可以排除.A中电线y=-kx+1.经过第一、二、四象限.一k0,而k0时.双曲线y

3、=人两分支各在第一、三象限,所以结论A可以排除.应选D.X解答过程:D解愚后的思考,熟练掌握一次函数、反比例函数的图象和性质例2.反比例函数),=A的图望如下图.点”是该函数图象匕一点.垂直于轴,垂足是点N如X果Sjw=2,求A的伯。思路分析:1)题意分析:此题考性反比例函数的几何意义2)解思路:设M(x,y),又根据aMON的面积与点M的关系可得:S,m诚二|川=A=2所以k=14,又函数图象在第二、四象限,那么k=-40解答过程:k=-4解后的思考:注意考虑用照数所在象限确定k的符号.变式1:点M是反比例函数V=与上任意一点,MN_1.x轴于点N,祖设SAMoN=2,那么X变式2:如图,点

4、P是反比例函数),=V上任意一点,PA1.x轴干点A,PB1.y轴于点B,XH-KfAOtf=2,那么火=,答案:1.k=42k=-2例3两个反比例区数y=&和y=1在第一象限内的图象如下图点P在y=勺的图象上,PC1.X轴XXX于点C交y=1.的图象于点A,PD_1.y釉干点D,交y=的图象于点B,当点P在y=&的图象上运XXX动时,以下结论:AODB与AOCA的面积相等:四边形PAOB的面积不会发生变化:PA与PB始终相等当点A是PC的中点时,点B一定是PD的中点.其中一定正谛的选项是(把你认为正确结论的序号都填上)。思路分析:DM意分析:此IS考兖反比例函数的几何性麻以及数形结合的能力.

5、2)解11思路:ZXODB与AOCA的面积都等于()5面积相等:四边形PAoB的面枳等于k-1,而枳不会发生变化:当点A是PC的中点时,点B一定是PD的中点是正确的.解答过程:解题后的思考,在日常学习与练习中要注重数形结合等数学思想的培养与落实。2例4.如图,在反比例函数V=W(-0)的图象上,有点外P,Py,Pi,它们的横坐标依次为1,X2. 3,4.分别过这些点作X轴与y轴的乖战,图中所构成的阴影局部的面积从左到右依次为&,S2,S1,那么5+S,+5,=.思路分析:1) J意分析:此鹿考克反比例函数的几何性质2) IWMa路:因为点p:,P,己的横坐标依次为1,2,3,4.可求得它们的侬

6、坐标分别为2、1I3S,+Sj+S,=1+=3解答过程:-2解题后的思考t此翘有R区分度,既考食了利用函数图象求函数的坐标又考ft了反比例函数的几何意义,同学们要有一定的分析向造的能力。由图象i真分析。问题就可迎刃而解了。例5.如图,反比例函数Y=V的图象与一次函数,,=,”一+力的图象交于A(1.,3),8(”,一1)两点.X(I)求反比例函数与一次函数的斛析式:(2)根据图象答更:当X取何值时,反比例函数的值大于一次函数的值思路分析:1) J意分析:此题考进用待定系数法求反比例函数和一次函数的解析式2)解思踣:k33(I)由A(1.3)在Y=-的图象匕知k=3,反比例函数关系式为v=三:由

7、8(”,一I)也在y=的XXX图象上,知n=-3,所以B(-3,-I),把41,3),R(3,-1)代入y=mx+b中,由待定系数法可求得m和b(2)由图象可知:当x=-3或1时反比例函数的值等千一次函数的值再结合图象答复.解答过程:(1).A(,3)在y=A的图象上,又.8(,-D在V=2的图象上.X.t=-3.!JB(-3,-1.)把A(1,3),B(-3,-I)代入y=mx+6得3=n+b-I=-3+解得:/H=1.b=2.所以,反比例函数的斛析式为,=,X一次函数的解析式为y=x+2,(2)从图象上可知,当x-3或Oxa+0M|yB|1X24+122=6.1后的思考,待定系数法是解决函

8、数问题的常用方法,同学们在解题时不仅要非常熟练地列出方程,还要计算准确.此题既考查了方程思想又考查了计算能力.在求向枳时常用到割补法.注意在学习中及时的归纳总结,尽快掌握这种方法.例7.阅读理解;对于任意正实数ab.V(-)-20.a-2J(ib+b0.只有当=b时,等号成立.结论:在+22疯(a.均为正实数)中,假设:)为定位那么+学只有当a=6时,a+b有鼓小值.2/.根据上述内容,答女以下问题:(I)假设,0,只有当?=时,+,有地小伯:m12(2)探索应用:4(-3,0),(0,-4).点P为双曲设y=&O)上的任意一点,过点P作PC1.xX轴干点C尸。1.),轴于。.求四边形ABC。

9、面积的最小值。思路分析:1)IMt分析:此烟是涉及反比例函数的淙合题.2)“思除由可得当加=I时,+有最小值2.四边形八8CQ的面积可由4AOB:ZXBOC:mDOC;AOD四局部面枳和构成,解答过程:(1)由可得当,=1.时,”1+1.有最小值一m(2SABm=SMoB+SM+Su7+Swoc:SMoM=6:Sm8=$3xP.|:Suw=IiP4sS犯久=4、闻;644因为P点在第一象限,横、纵坐标均为正.s4f1.,=6+P,+6+2,112+2f3VC=12+12=24:只有当TP4=2时,四边形面枳最小.解题后的思考,此题阅读址较大,有一定的区分度,但只要逐句理解其去达的数学意义,并能

10、理解应用.那么这道鹿就UJ解决。这种题型在中考中是屡见不鲜的,也成为中考试题的亮点及难点。考杳了同学们的理解创新能力.小绦1 .进一步理解反比例的概念。2 .结合具体情境体会反比例函数的意义.理解反比例函数的几何意义.3 .会求反比例函数的解析式,及利用反比例函数解析式求一次函数好析式.4 .学会用数形结合的思切解决函数问题,呼痣“it巧I,在探究反比例函数的性质时,可结合正比例函数y=kx(k0)的图象和性质,来怖助观察、分析及归纳,通过比照,使更好地理解和掌握所学的内容.要注意的是,反比例函数的图象位置和增减性是由反比例系数k的符号决定的;反之,由双曲践的位词和函数性旗也能推出k的符号,注

11、迤体会数形结合的思想方法。2.解决一些较综合的题目.要钻练掌握反比例函数的图象和性质,要学会如何遹过函数图您分析解析式,或由函数解析式分析图象的方法,以便更好的理解数形结合的思想.最终能到达从“数”和“形”两方面去分析问题、解决问题.呼朋给导学一、51习新知:下节课我们将学习勾股定理.二、演习点拨你知道勾股定理是怎么发现的吗?请同学的上网查一杳勾股定理的发现过程,以及勾股定理.的内容,你能用面积法证明它叫?了解我国古代在句般定理研咒方面所取徨的成就.了解数学史.101(答题时间:60分钟)一、选择题1 .反比例函数y=9的图象经过点(2,3),那么n的值是()XA.-2B.-IC.0D.12

12、.假设反比例函数y=&(k0)的图象羟过点(一1,2),那么这个函数的图象一定经过点()XA.(2,-I)B.2)C.(一2,-I)D.(-,2)223 .甲、乙两地相距S(km),汽车从甲地匀速行驶到乙地JE么汽车行驶的时间”h)与行裂速度Mkh)的函数关系图象大致是()4 .假设y与X成正比例,X与z成反比例,那么y与z之间的关系是()A.成正比例B.成反比例C.不成正比例也不成反比例D.无法确定5 .一次函数y=k-k,yx的增大而减小,那么反比例函数y=七满足()XA.当x0时,y0B.在每个象限内,yRfix的增大而减小C图象分布在第一、-:象限D.图轨分布在第二、四段限6 .如图.点P是X轴正半轴上一个动点.过点P作X轴的承线PQ交双曲线y=干点Q.连结OQ.X点P沿X轴正方向运动时,RtAQOP的面积()A.逐渐增大B.逐渐减小C.保持不变D.无法确定7 .在一个可以诙变容积的密闭容器内,装有一定质量m的某种气体,当改变容枳V时,气体的密度。也随之改变.P与V在一定他国内满足P=竺,它的图象如下图,那么该V8 .假设A(-3,y1),B(-2.y2),C(-.y3)三点都在函数y=-?的图象上,那么y1,y2.ys的大小关系是()A.y,2y3B.yy232I9 .反比例函数y=二”的图象上有A(

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 中学教育 > 试题

copyright@ 2008-2023 1wenmi网站版权所有

经营许可证编号:宁ICP备2022001189号-1

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。第壹文秘仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知第壹文秘网,我们立即给予删除!