《傅里叶变换和拉普拉斯变换的性质及应用.docx》由会员分享,可在线阅读,更多相关《傅里叶变换和拉普拉斯变换的性质及应用.docx(19页珍藏版)》请在第壹文秘上搜索。
1、1 .前言1.1 w*利用变换可简化运算,比如对数变换,极坐标变换等类似的,变换也存在于工程,技术领域,它就是积分变换。积分变换的运用,可以使求解微分方程的过程得到简化,比如乘积可以转化为卷积。什么是积分变换呢?即为利用含参变量积分,把一个属于八函数类的函数转化属于B函数类的一个函数。傅里叶变换和拉普拉斯变换是两种重要积分变换C分析信号的种方法是傅立叶变换,傅里叶变换能够分析信号的成分,也能够利用成分合成信号。可以当做信号的成分的波形有许多,例如锯齿波,正弦波,方波等等。傅立叶变换是利用正弦波来作为信号的成分。拉普拉斯变换最早由法国数学家天文学家PM*S而所1.aPk拉普拉斯)(1749-18
2、27)在他的与概率论相关科学探讨中引入,在他的一些基木的关于拉普拉斯变换的结果写在他的闻名作品概率分析理论之中.即使在19世纪初,拉普拉斯变换已经发觉,但是关于拉普拉斯变换的相关探讨却始终没什么太大进展,直至一个英国数学家,物理学家,同时也是一位电气工程师的O1.iverHeaviside奥利弗亥维赛(18501925)在电学相关问题之中引入算子运算,而且得到了不少方法与结果,对于解决现实问题很有好处,这才引起数学家对算子理论的严格化的爱好。之后才创立了现代算子理论。算子理论最初的理论依据就是拉普拉斯变换的相关理论,拉普拉斯变换相关理论的接着发展也是得益于算理理论的更进一步发展。这篇文章就是针
3、对傅里叶变换和拉普拉斯变换的相关定义,相关性质,以与相关应用做一下简要探讨,并且分析傅里叶变换和拉普拉斯变换的区分与联系。1.2 E(备学问定理(傅里叶积分定理)若在(-,+00)上,函数f(t)满意一下条件:(I)在随意个有限闭区间上面/)满意狄利克雷条件;(2)Odt1.(t)则:刊叫(t)+帽=%()+2()-1(3)+()=呜(t)+-2)性质2.1.2(位移性顺)设F(t)=下(3),则包(to)=曲明叫尸(33(1)J=eWM刊/()性质2.1.3(微分性质)设下(3)=FQ),f(t)在(-8,+8)连续或可去间断点仅有有限个,且Iim/)=0,则:Cooz,T(t)=iF()n
4、(t)=G)nF(),证明由傅里叶变换的定义有,8,+B7,(0=I,(t)e-1.trft=Ie-i1.df(C)J-8*-00+oof+00=/(t)e-,t+心/e-3tA=F()-81.g性质2.1.4(积分性质)设尸/)=下(3),若,姐/川=0则:心叶鬻J一8J3证明因为Ij)(M=f).故由微分性质得下(3)=()T/(t)dt.y-co定理2.1.1(卷积定理)假如F(3)=Ff(t),F2(3)=F2(t),则有:I(O*2(O)=F1()F2()y-1F1()*F2()=2111(t)(t)证明W*2(t)=(O做c)e-3dt=1.1()(t-)d-(t-)e2i)d(t
5、-)dF2()()e-1.fd=F1()F2()性质2.1.6(Parseva1.恒等式)假如有F(3)=F(/,则有(OI2dt=-F()2d这个式子又叫做ParSeVa1.等式。2.26函数与其傅里叶变换定义(5函数)O,tO,8,t=Of满意:(1) V(t)=I(2) I5(t)dt=1J-co的函数是b函数。定义2.2.2G(CTo)2数)满意:(1)S(t-C0)=tt0.(2)的函数是S(t-Q)函数。定义2.2.3G函数的数学语言表述)f1./、-.OtT,5r=h(0.其他,TTO时,&Q)的极限叫做b函数,记作5)=Hm“Q)O定义2.2.4(狄-3函数的数学语言表述)f1
6、.t.一,t0tt0+,(t-t0)=.0,其他,0时,Sra-%)的极限叫做6(t-)函数,记作6QTo)=Iimr(t-10)r-O性质2.2.1。函数的箫选性质)对随意连续函数/(t),有+(t)f(t)dt=/(O)r+8(t-t0)(t)dt=/(to)性质2.2.2(6函数的相像性质)设a为实常数,则:(at)=7-:5(1)(0)Ia1.定义2.2.5(单位阶跃函数)5函数是单位阶跃函数在t0时的导数S(D=u,(t)这里u(t)=(0tJ(5(t)=I(t)e-itdt=e-it|t=0=1/cor+8T(t-10)=5(t-t0)e-ifdt=t-to=e*%J-QQ所以TT
7、5(t).,1,-I.FT即6(t)和1,5-5)和eT3Q分别构成了傅里叶变换对。2.3傅里叶变换的应用求微分积分方程依据傅里叶变换的性质2.1.1,2.1.3,对须要求解的微分方程的两边取傅里叶变换,把它转换成像函数的代数方程,依据这个方程求解得到像函数,接着接着取傅里叶逆变换即可以得到原方程的解,下图是此种解法的步骤,是解这种类型的微分方程的主要方法。求积分方程rbIff()sintd)=/(t)Jo的解g(3),其中(r-sint,On解该积分方程可改写为itr+82Jg()sintd=-f(t)gr(t)为的傅里叶正弦逆变换,故有:f+tn11f1.tg()=J-g()sintd=J
8、sintsintdc1 fir,、,、,sin11=XIcos(1.-)t-cos(1.+)1.dt=2 41-3,求积分方程,+8gQ)=(t)+I()5(e-y)d,J8其中f(t),Mt)是已知函数,而且f(t),g(t),MD的傅里叶变换存在。解设尸Ig(C)J=G3),yh(t)J=H().由定义(卷积)可知,方程右端其次项=f(t)g(t).故对方程两边取傅里叶变换,依据卷积定理可得:G()=H()+F()(7().所以H(三)G(3)=7()。由傅里叶逆变换,求出原方程的解:g(0=+G()e-td=广H胃门血丸)211J.m2111.001-F()例求微分积分方程ax(t)+b
9、x(t)+cfx(t)dt=h(t)的解,其中一8ttd解偏微分方程例(一维波动方程的初值问题)用傅里叶变换求定解问题:12u2u乔=说-xr0Uh=O=COSX,牡=O=SinX,解由于未知函数U(XJ)中X的变更范围为(-8,+8),故对方程和初值条件关于X取傅里叶变换,记Ju(x.t)=W(.f),TT=()2t(.t)=-2U,t),2ff,d2z、=疗M刈。I=/人一),cosx=115(+1)+(-1).1.F(sinx=11j(+1)(1).定解问题已经变更为求含参变量3的初值问题:d2U,正U,(t-0=11(+1)+(,1)(1Um1.r-o=11j(+1)-1).U(3,。
10、是一个关于工的二阶常系数齐次微分方程,求得通解为:U(.t)=cisint+c2cost,由初值条件可知:C1.=/(+1)-5(-1).c2=r5(+1)+6(3-1)。3因此初值问题的解为:(/(.t)=6(0+1)-(-1.)stnt+115(+1)+5(-1.)cost=(rcos3t+-jsint+1)+(11cost-jsint6(3-1)。对上面的解取傅里叶逆变换,依据性质2.2.4(6函数的筛选性质)原定解问题的解为:=2TTU(XJ)=T-1u(,t)IGeoSftK+jsintj(+1)+11cost-sin3t)5(-1)eitdee-iei+e-i=Sint-+cost=Sintsinx+Costcosx2/2=cos(t-X)3.拉普拉斯变换的性质与应用3.1 拉普拉斯变换的性顺性质(存在性).假如在0,+8)这个区间上广可以满意如卜.的条件:(1)在随意的一个有限的区间上面广分段连续:(2)3M0,M是常数,c0,