《存储模型设计和实现.docx》由会员分享,可在线阅读,更多相关《存储模型设计和实现.docx(7页珍藏版)》请在第壹文秘上搜索。
1、存储模型摘要本文建立的是在产品需求稳定不变,生产准备费和产品贮存费为常数、生产能力无限的条件下的存贮模型。在不允许缺货和允许缺货的这两种情况下,为了简化模型的建立,我们采用了连续的变量来更加合理地来描述问题。模型的求解是一个以每天的平均费用作为目标函数来求解的优化模型。本文主要是通过数学中的微积分知识,借助MatIab程序实现,来求目标函数的极值问题,从而求得总费用最小的方案。首先,在模型一中我们提出了不允许缺货的优化模型,即综合考虑在产品需求稳定不变、生产准备费和产品贮存费为常数、生产能力无限、不允许缺货以及确定生产周期和产量的情况下,使总费用最小的模型。这个模型中,通过对得到的目标函数进行
2、分析求解,可以得出经济订货批量公式(EQQ公式),验证了模型一的准确性。其次,模型二中考虑当缺货的损失费不超过不允许缺货导致的准备费和贮存费时,提出了允许缺货的贮存模型。根据贮存量函数和周期之间的关系,得到适用于模型二的目标函数。此外,在模型二的求解中,当函数中的变量都各自趋于某一定值时,可以近似认为不允许缺货模型是缺货模型的特例。总而言之,本文中的存贮模型是在总费用中增加购买货物本身的费用时,重新确定最优订货周期和订货批量的优化模型,并且证明了在不允许缺货模型和允许缺货模型中结果都与原来的一样,充分考虑了模型的优化。关键词:不允许缺货;允许缺货;订货周期;订货批量;matlab程序一、问题重
3、述在我们的周边有一家配件厂,据我们得知,该厂为装配线生产若干种部件时因更换要付生产准备费(与生产数量无关),同一部件的产量大于需求时因积压资金、占用仓库要付贮存费。现已知某一部件的日需求量为100件,生产准备费5000元,贮存费每日每件1元。如果生产能力远大于需求,试求在以下两种情况下来安排该产品的生产计划,即多少天生产一次(称为生产周期),每次产量多少,可使总费用最小。(1)不允许出现缺货(2)允许出现缺货二、问题分析在第(D问时,我们不如先来试算一下以下几种情况的结果:若每天生产一次,每次100件,则我们可知,此时无贮存费,生产准备费5000元,每天费用为5000元;若10天生产一次,每次
4、1000件,则我们可知,此时贮存费为900+800+100=4500元,生产准备费5000元,总计9500元,平均每天费用为950元;若50天生产一次,每次5000件,则我们可知,此时贮存费为4900+4800+100=122500元,生产准备费5000元,总计127500元,平均每天费用为2550元;从以上的计算看,生产周期短、产量少,会使贮存费小,准备费大;而周期长、产量多,会使贮存费大,准备费小。所以必然存在一个最佳的周期,使总费用最小。我们可知,这应该算是一个优化模型我们应先建立一个不允许缺货的存贮模型,即在产品需求稳定不变,生产准备费和产品贮存费为常数、生产能力无限、不允许缺货下的确
5、定生产周期和常量,使总费用最小的模型。而在第(2)问中,需改进一下第一问的条件,在短时间可以缺货的情况下,虽然这会造成一定的损失,但如果损失费不超过不允许缺货导致的准备费和贮存费的话,我们可优化一下第一个模型,建立一个更全面的模型。三、模型假设为了处理的方便,考虑连续模型,即设生产周期T和产量Q均为连续量。根据问题性质,我们作如下假设:1 .产品每天的需求量为常数门2 .每次生产准备费为c”每天每件产品贮存费为C2;3 .生产能力为无限大(相对于需求量),当贮存量降到零时,Q件产品立即生产出来供给需求;4 .在第(1)问中,不允许缺货;5 .在第(2)问中,允许缺货,每天每件产品缺货损失费为C
6、3,但缺货数量需在下次生产(或订货)事补足。四、符号说明符号意义r产品每天的需求量C1每次生产准备费C2每天每件产品贮存费q(t)相应时间t下的贮存量Q每次的产量T生产周期C每天平均最小费用五、模型的建立与求解5.1 模型一的建立:不允许缺货的存贮模型先考察这样的问题,配件厂为装配线生产若干部件,轮换生产不同的部件时因更换设备要付生产准备费(与生产数量无关)同一部件的产量大与需求时因积压资金、占用仓库要付贮存费.将贮存量表示为时间/的函数4),,=0生产0件,贮存量g(0)=Q,Mr)以需求率r递减,直到4(T)=0,如图1示,显然有Q=rt.(1)图1不允许缺货模型的贮存量夕一个周期内的贮存
7、费GJ(Z力,其中积分恰等于图中三角形A的面积.吗因为一个周期的准备费是q,再注意到(1)式,得到一周期的总费用为C=cl+C2QT/2=cl+c2rT2/2于是每天的平均费用是C(T)=CT=cJT+CvTl2.(3)式即为这个优化模型的目标函数.5.2模型一的求解:求T使最小.容易得到代入式得到由(3)式算出最小的总费用为(4),(5)式是经济学中著名的经济订货批量公式(EOQ公式)14L由(4),(5)式可以看到,当准备费G增加时,生产周期和产量都变大;当准备费增加时,生产周期和产量都变小;当需求量一增加时,生产周期变小而产量变大.这些定性的结果都是符合常识的.得到的模型用于计算开始的问
8、题:以C=图7q=5000g=l=l代入(4)(6)式可得T=Io天,T=100O元,这里得到的费用C与前面计算的950元有微小的差别,是因为假设函数为连续函数时,多计算了qJ;(Ioo-1。力5.3模型一的结果分析讨论参数q,c2,有微小变化时对生产周期的影响.用相对改变量衡量结果对参数的敏感程度,T对q的敏感程度记为S(Tici),由式容易得到S(T,q)=l2,作类似的定义可得的S(T,c2)=-12,S(T)=-1/2.即q增加了1%,T增加了0.5%,而或r增加了1%,丁减少0.5%.q,G的微小变化对生产周期丁的影响是很小的.5.4模型二的建立:允许缺货的存贮模型在某些情况下用户允
9、许短时间的缺货,虽然这会造成一定的损失,但是如果损失费不超过不允许缺货的准备费和贮存费的话,允许缺货就应该是可以采取的策略。因贮存量不足造成缺货时,可认为贮存量函数夕为负值,如图2,周期仍记作丁,Q是周期初的贮存量,当,=工时式。=0,于是有Q=r7.(8)在7;到了的这段缺货时段内需求率不变,夕按原斜率继续下降。由于规定缺货量补足,所以在f=T时数量为R的产品立刻到达,使下周期的贮存量恢复到Q。图2允许缺货模型的贮存量Mf)与建立不允许缺货模型时类似,一个周期内的贮存费时C2乘以图2中三角形A的面积,缺货损失费时乘以图2中三角形B的面积.计算这两块面积,并加上准备费q,得到一周的总费用为C=
10、c1+c27J2+c3r(T-7J)22.利用(8)式将模型的目标函数一一每天的平均费用一一记作丁和。的二元函数5.5模型二的求解:利用微分法求T和。使C(丁,。)最小,令%=o,8%Q=O,可得(为了与不允许徐缺货模型相区别,最优解记作T,。)注意到每周期的供货量R=,7,有与不允许缺货模型的结果(4),(5)式比较不难得到T,=Ti0=%,R=Q.由(13)式,九1,故式(14)给出T2T,Q。,即允许缺货时周期及供货量应增加,周期初的贮存量减少,缺货损失费G越大(相对于贮存费C2),2越小,T越接近丁,Q,R越接近。.当C38时41,于是TT,QQ,RfQ这个结果合理么(考虑G8的意义)
11、.由此不允许缺货模型可视为允许缺货模型的特例.六、模型评价与推广本文中所建立的模型是从工厂原料需求的实际出发建立的最优规划模型,在需求量稳定的前提下讨论了两个简单的存贮模型:不允许缺货模型和允许缺货模型。前者适用于一旦出现缺货会造成重大损失的情况(如炼铁厂对原料的需求),后者适用于像商店购货之类的情形,缺货造成的损失可以允许和估计。问题一中提出了不允许缺货的优化模型,即综合考虑在产品需求稳定不变、生产准备费和产品贮存费为常数、生产能力无限、不允许缺货以及确定生产周期和产量的情况下,使总费用最小的模型。问题二则考虑当在某些情况下用户允许短时间的缺货,虽然这会造成一定的损失,但是如果损失费不超过不允许缺货的准备费和贮存费的话,允许缺货所对应的数学模型。模型的扩展性良好,能够解决多种状况下的存贮情况。而且模型充分考虑了各种因素,综合多种可变条件的关系,从问题的根源出发,得到的目标函数能够普遍适用七、参考文献1姜启源,谢金星,叶俊.数学模型.高等教育出版社,1987.2李德.运筹学M.北京:清华大学出版社,1985.4133李维铮.运筹学M.北京:清华大学出版社,1985.4104刘应辉.经济应用数学M.北京:中国财政经济出版社,1991.203.