《计算机仿真技术基础第4章连续系统模型的离散化处理方法.ppt》由会员分享,可在线阅读,更多相关《计算机仿真技术基础第4章连续系统模型的离散化处理方法.ppt(30页珍藏版)》请在第壹文秘上搜索。
1、第四章第四章 TseZ ZTsln1 TseZTs 1TZs1 2()()12!nTxTxTxeTxn231)()()(2 sssUsYxGTZs1)1(2)1(3)1(1)(22 TzTzzG2222)1(3)1(TzTzT )()()231()23(222zUzYTTzTzT )()()231()()23()(222zUTzYTTzzYTzYz )()()231()1()23()2(22nuTnyTTnyTny )()()231()1()32()2(22nuTnyTTnyTny )1()1()()()1()()()1(1222111nxnynhfnxnxnhfnxnx231)()()(2
2、sssUsYxG简简单单替替换换法法)()()231()1()32()2(22nuTnyTTnyTny 12122132xyuxxxxx xyuxx01103210 )1()1()()(3)(2)()1()()()1(12122211nxnynunxnxhnxnxnhxnxnx)1()1()2()2(211 nhxnxnxny)()(3)(2)(212nunxnxhnxh )()1()(112nxnxnhx )()31()()(2)1(22121nhxhnuhnxhnx )()()231()1()32(2121nuhnxhhnxh )()1(11nxnx )1()1(2 ZTZs221212T
3、sTsTsTseZeTsessusysG1)()()()()(tuty 微微分分方方程程为为)(211 nnnnffhyy梯形公式为梯形公式为)(21 nnnuuhy)1()1(2 ZTZs双线性变换双线性变换)()()1(2)1()(zuzyZZTzG )()1()(2)1(2ZnunuTnyny 反反变变换换)()1(2)()1(nunuTnyny G(S)u(t)y(t)G(S)Gh(S)(tu)(ty)(*ty)(tu)(tu)(tu)(tu)(tu)(ty )()()()()(SGSGhZUZYZG )()()()()(SGSGhZUZYZG sSG1)()()()(SGSGhZG
4、SeSGTSh 1)(21SeTS 211)1(SZ 211 ZTZZZ1 ZT)()(ZUZY)()()1(nTunyny )()()(SGSGhZG 211)(SeTSTSGTSh SSeTSTTS1112 22121STSTSeeTSTS 2321111STSZ 23221)1()1(2)1(11ZTZZZZTTZ)()(ZUZY )()1(32)1()2(nunuTnyny 3322)1(2)1(2)1(2)1(1ZZTZZZTZZZ)1(2212 ZZZZTZZZT 2132BSADSCSG )()()()(SGSGhZG SeSGTSh 1)(BSADSCSeTS1 BSADSCS
5、Z1)1(1 BSACABDSACZZ1 BASACBDSACZZ1 TBAeZZACBDZZACZZ11 BA令TeZZACBDAC 1TTeZBDACZACBDeACZACZUZY )()(TTeZBDACZACBDeACZACZUZY )()(TTeZeACBDACZBD )()1()()1(nueACBDACnuBDnyenyTT ABBCeDABCRBDQePTT ,)()1()()1(nRunQunPyny DUCXYBUAXX tdButXttX0)()()0()()(零阶保持器)(kuxx)(ku)(tuBuAxx tdButXttX0)()()0()()(KTt 令 KTKT
6、AAKTduBeXeKTX0)()()0()(TKTKATKAduBeXeTKX1011)()0(1 KTKTAATTKTKAduBeeduBe0101)()(TKKTTKAduBe11)()(1KTXeTKXAT KTKTAATTKAATduBeeXeKTXe0)()1()()0()(TKKTTKAduBe11)()(1KTXeTKXAT tKT TKKT)1(,),0(Tt TKKTu)1()(在)()(KTuu )(1KTXeTKXAT )(0)(KTuBdteTtTA ATeT )()()()()(1KTUTGKTXTTKX TtTABdteTG0)()()()()()()(2121nmpSpSpSqSqSqSKSGnm ,()()()()()()(21121nmnmpzpzpzzzqzqzqzKzGz nippii:1,与mjqqjj:1,与mn 1zK nimjijpSqSKSG11)()()(ijpq,TseZ ijpq,ijpq,nimjzijpzqzKzG11)()()(mn 1