《第4章控制系统的分析方法.ppt》由会员分享,可在线阅读,更多相关《第4章控制系统的分析方法.ppt(63页珍藏版)》请在第壹文秘上搜索。
1、2023-11-31CH4、控制系统的分析方法 早期的控制系统分析过程复杂而耗时,如想得到一个系统的冲激响应曲线,首先需要编写一个求解微分方程的子程序,然后将已经获得的系统模型输入计算机,通过计算机的运算获得冲激响应的响应数据,然后再编写一个绘图程序,将数据绘制成可供工程分析的响应曲线。MATLAB控制系统工具箱和SIMULINK辅助环境的出现,给控制系统分析与设计带来很多方便。控制系统的分析包括系统的稳定性分析、时域分析、频域分析及根轨迹分析。2023-11-32第一节 控制系统的稳定性分析q系统特征方程的一般形式为q对于连续时间系统,如果闭环极点全部在S平面左半平面,则系统是稳定的;否则系
2、统是不稳定的。q对于离散时间系统,如果系统全部极点都位于Z平面的单位圆内,则系统是稳定的。q若连续时间系统的全部零点都位于S左半平面;或若离散时间系统的全部零点都位于Z平面单位圆内,则系统是最小相位系统。一、系统稳定及最小相位系统判据niininnnnosaasasasasD01110.)(mizi,2,1,0)Re(nipi,2,1,0)Re(nipi,2,1,1mizi,2,1,12023-11-332、直接判别MATLAB提供了直接求取系统所有零极点的函数,因此可以直接根据零极点的分布情况对系统的稳定性及是否为最小相位系统进行判断。二、系统稳定及最小相位系统的判别方法1、间接判别(工程方
3、法)劳斯判据:劳斯表中第一列各值严格为正,则系统稳定,如果劳斯表第一列中出现小于零的数值,系统不稳定。胡尔维茨判据:当且仅当由系统分母多项式构成的胡尔维茨矩阵为正定矩阵时,系统稳定。即系统稳定的充要条件:全部为正。茨行列式特征方程的各阶古尔维),2,1(0nkDaki2023-11-34例exp04_01.m 已知某系统的模型如右所示:uxyuxx7165210016127587403622121要求判断系统的稳定性及系统是否为最小相位系统。例exp04_02.m系统模型如下所示,判断系统的稳定性,以及系统是否为最小相位系统。11221171494528110142841163)(234562
4、3ssssssssssG2023-11-35ii=find(条件式)用来求取满足条件的向量的下标向量,以列向量表示。例如 exp04_01.m中的条件式为real(p0),其含义就是找出极点向量p中满足实部的值大于0的所有元素下标,并将结果返回到ii向量中去。这样如果找到了实部大于0的极点,则会将该极点的序号返回到ii下。如果最终的结果里ii的元素个数大于0,则认为找到了不稳定极点,因而给出系统不稳定的提示,若产生的ii向量的元素个数为0,则认为没有找到不稳定的极点,因而得出系统稳定的结论。pzmap(p,z)根据系统已知的零极点p和z绘制出系统的零极点图2023-11-36第二节 控制系统的
5、时域分析 一、时域分析的一般方法系统仿真实质上就是对系统模型的求解。对控制系统来说,一般模型可转化成某个微分方程或差分方程表示。一个动态系统的性能常用典型输入作用下的响应来描述。响应是指零初始值条件下某种典型的输入函数作用下对象的响应,因此在仿真过程中,一般以某种数值算法从初态出发,逐步计算系统的响应,最后绘制出系统的响应曲线,这样可分析系统的性能。控制系统最常用的时域分析方法是,当输入信号为单位阶跃和单位冲激函数时,求出系统的输出响应,分别称为单位阶跃响应和单位冲激响应。2023-11-37对一阶系统微分方程:闭环传递函数:参数:时间常数T性能指标:调节时间ts 超调量%)()()(trtc
6、dttdcT)111111)()()(KTTssKsdensnumsG(其中2023-11-38对二阶系统微分方程:闭环传递函数:其中参数:阻尼比 无阻尼自然振荡频率n 性能指标:上升时间tr;峰值时间tp;调节时间ts;超调量%在MATLAB中提供了求取单位阶跃和单位冲激输入下系统响应的函数。求取系统单位阶跃响应:step()求取系统的冲激响应:impulse()()()(2)(222trtcdttdcTdttcdT2222)()()(nnnsssdensnumsGTn12023-11-391、step()函数的用法 exp04_03.mqy=step(num,den,t):其中num和de
7、n分别为系统传递函数描述中的分子和分母多项式系数,t为选定的仿真时间向量,一般可以由t=0:step:end等步长地产生出来。该函数返回值y为系统在仿真时刻各个输出所组成的矩阵。qy,x,t=step(num,den):此时时间向量t由系统模型的特性自动生成,状态变量x返回为空矩阵。qy,x,t=step(A,B,C,D,iu):其中A,B,C,D为系统的状态空间描述矩阵,iu用来指明输入变量的序号。x为系统返回的状态轨迹。2023-11-310q如果对具体的响应值不感兴趣,而只想绘制系统的阶跃响应曲线,可调用以下的格式:step(num,den);step(num,den,t);step(A
8、,B,C,D,iu,t);step(A,B,C,D,iu);q线性系统的稳态值可以通过函数dcgain()来求取,其调用格式为:dc=dcgain(num,den)或dc=dcgain(a,b,c,d)例exp04_04:已知系统的开环传递函数:求系统在单位负反馈下的阶跃响应曲线。sssssG4036820)(2342023-11-3112、impulse()函数的用法求取脉冲激励响应的调用方法与step()函数基本一致。y=impulse(num,den,t);y,x,t=impulse(num,den);y,x,t=impulse(A,B,C,D,iu,t)impulse(num,den)
9、;impulse(num,den,t)impulse(A,B,C,D,iu);impulse(A,B,C,D,iu,t)2023-11-312例exp04_05.m例exp04_06.m例exp04_07.m2023-11-313仿真时间t的选择:q对于典型二阶系统根据其调节时间的估算公式 可以确定。q对于高阶系统往往其响应时间很难估计,一般采用试探的方法,把t选大一些,看看响应曲线的结果,最后再确定其合适的仿真时间。q一般来说,先不指定仿真时间,由MATLAB自己确定,然后根据结果,最后确定合适的仿真时间。q在指定仿真时间时,步长的不同会影响到输出曲线的光滑程度,一般不易取太大。nswt43
10、例exp04_08.m2023-11-314二、常用时域分析函数时间响应探究系统对输入和扰动在时域内的瞬态行为,系统特征如:上升时间、调节时间、超调量和稳态误差都能从时间响应上反映出来。MATLAB除了提供前面介绍的对系统阶跃响应、冲激响应等进行仿真的函数外,还提供了其它对控制系统进行时域分析的函数,如:covar:连续系统对白噪声的方差响应initial:连续系统的零输入响应lsim:连续系统对任意输入的响应对于离散系统只需在连续系统对应函数前加d就可以,如dstep,dimpulse等。它们的调用格式与step、impulse类似。2023-11-315三、时域分析应用举例MATLAB的s
11、tep()和impulse()函数本身可以处理多输入多输出的情况,因此编写MATLAB程序并不因为系统输入输出的增加而变得复杂。例exp04_092023-11-316例exp04_10d=16.7331 e=0.0771d=wn2e=(2*z*wn-1)/d2023-11-317例exp04_11.m例exp04_12_1.m2023-11-318exp04_12_2.m含有零点的二阶连续系统传递函数为设其固有频率n=1,阻尼系数=0.4,在时间常数Tm=0.5,1,2时,分别画出其脉冲响应函数曲线。将系统在采样间隔为Ts=0.1的条件下离散化,并做脉冲响应曲线。2222)1()(nnmns
12、ssTsH结果分析:从图中可见,所加零点越小,即时间常数Tm越大,则阶跃响应的超调加大,上升时间减小,系统的跟踪速度加快。2023-11-319exp04_12_3.m含有附加实极点1/Tp的二阶连续系统传递函数为设固有频率n=1,阻尼系数=0.4,在时间常数Tp=0.5,1,2时,分别画出其阶跃响应函数曲线和极点分布。)1)(2()(222sTsssHpnnn结果分析:对应于Tp=0.2,1,2,系统输出方差分别为p=0.5303 0.4018 0.2462。可见,附加的极点越小,即时间常数Tp越大,阶跃响应的超调加大,上升时间加大,系统的跟踪速度变慢,对噪声的抑制能力增大。可以近似认为,系
13、统的响应主要取决于虚部最小的极点。2023-11-320第三节 控制系统的频域分析q频率响应是指系统对正弦输入信号的稳态响应,从频率响应中可以得出带宽、增益、转折频率、闭环稳定性等系统特征。频率法所研究的问题,仍然是自动控制系统控制过程的稳定性、快速性及稳态精度等性能。q根据系统频率响应特性来研究系统稳定性的优点是:(1)不需求解特征方程的根;(2)频率响应实验简便又准确。一、频域分析的一般方法2023-11-321频域性能指标v峰值Am 是幅频特性A()的最大值。峰值大则表明系统平稳性差。v带宽b 是幅频特性A()的数值衰减到0.707A(0)时所对应的频率。b高表明快速性好。v相频宽b是(
14、)等于时所对应的频率。b高也反应系统快速性好。vA(0)是指零频率(0)时的振幅比。A(0)的数值与1相差之大小,反映系统的稳态精度,A(0)越接近于1,系统的精度越高。为相频特性为幅频特性其中)()()()()()()()()()()(wwwwXwXwAewAjwXjwXjwGioiowjioq频率特性是指系统在正弦信号作用下,稳态输出与输入之比对频率的关系特性。频率特性函数与传递函数有直接的关系,记为:2023-11-322q采用频域分析法可直观地表达出系统的频率特性,分析方法比较简单,物理概念比较明确,对于改善系统稳定性和暂态性能等问题,都可以从系统的频率特性上明确地看出其物理实质和解决
15、途经。q通常将频率特性用曲线的形式进行表示,包括对数频率特性曲线和幅相频率特性曲线简称幅相曲线,MATLAB提供了绘制这两种曲线的函数。q求取系统对数频率特性图(波特图):bode()q求取系统奈奎斯特图(幅相曲线图或极坐标图):nyquist()2023-11-3231、对数频率特性图(波特图)q对数频率特性图包括了对数幅频特性图和对数相频特性图。横坐标为频率w,采用对数分度,单位为弧度/秒;纵坐标均匀分度,分别为幅值函数20lgA(w),以dB表示;相角,以度表示。qMATLAB提供了函数bode()来绘制系统的波特图,其用法如下:qbode(a,b,c,d):自动绘制出系统的一组Bode
16、图,它们是针对连续状态空间系统a,b,c,d的每个输入的Bode图。其中频率范围由函数自动选取,而且在响应快速变化的位置会自动采用更多取样点。2023-11-324qbode(a,b,c,d,iu):可得到从系统第iu个输入到所有输出的波特图。qbode(num,den):可绘制出以连续时间多项式传递函数表示的系统的波特图。qbode(a,b,c,d,iu,w)或bode(num,den,w):可利用指定的角频率矢量绘制出系统的波特图。q当带输出变量mag,pha,w或mag,pha引用函数时,可得到系统波特图相应的幅值mag、相角pha及角频率点w矢量或只是返回幅值与相角。相角以度为单位,幅值可转换为分贝单位:magdb=20log10(mag)2023-11-325exp04_13.m典型二阶系统设自然振荡频率n=10,阻尼系数=0.2,0.6,1时的波特图)2()(222nnnsssH结果分析:从图中可以看出,二阶连续系统在阻尼系数很小时,其幅频特性在转折频率处出现谐振峰值,相频特性在这个频率附近迅速下降。随着的增加,幅频特性的峰值减小,在阻尼系数=0.7后,幅频特性单调下降,相