《第6章61621.ppt》由会员分享,可在线阅读,更多相关《第6章61621.ppt(82页珍藏版)》请在第壹文秘上搜索。
1、第第6 章章 基于动态数学模型的基于动态数学模型的异步电动机调速系统异步电动机调速系统第第6 章章 基于动态数学模型的基于动态数学模型的异步电动机调速系统异步电动机调速系统 本节提要本节提要 问题的提出问题的提出 异步电动机动态数学模型的性质异步电动机动态数学模型的性质 三相异步电动机的多变量非线性数学模型三相异步电动机的多变量非线性数学模型 坐标变换和变换矩阵坐标变换和变换矩阵 三相异步电动机在两相坐标系上的数学模三相异步电动机在两相坐标系上的数学模型型 三相异步电动机在两相坐标系上的状态方三相异步电动机在两相坐标系上的状态方程程 问题的提出问题的提出 前节论述的基于稳态数学模型的异步电前节
2、论述的基于稳态数学模型的异步电机调速系统虽然能够在一定范围内实现平机调速系统虽然能够在一定范围内实现平滑调速,但是,如果遇到轧钢机、数控机滑调速,但是,如果遇到轧钢机、数控机床、机器人、载客电梯等需要高动态性能床、机器人、载客电梯等需要高动态性能的调速系统或伺服系统,就不能完全适应的调速系统或伺服系统,就不能完全适应了。要实现高动态性能的系统,必须首先了。要实现高动态性能的系统,必须首先认真研究异步电机的动态数学模型。认真研究异步电机的动态数学模型。6.1 异步电动机动态数学模型的性质异步电动机动态数学模型的性质1.直流电机数学模型的性质直流电机数学模型的性质 直流电机的磁通由励磁绕组产生,可
3、以在电枢合上电源以前建立起来而不参与系统的动态过程(弱磁调速时除外),因此它的动态数学模型只是一个单输入和单输出系统。直流电机直流电机模型模型Udnl 直流电机模型变量和参数直流电机模型变量和参数 输入变量输入变量电枢电压电枢电压 Ud;输出变量输出变量转速转速 n;控制对象参数:控制对象参数:p机电时间常数机电时间常数 Tm;p电枢回路电磁时间常数电枢回路电磁时间常数 Tl;p电力电子装置的滞后时间常数电力电子装置的滞后时间常数 Ts。l 控制理论和方法控制理论和方法 在工程上能够允许的一些假定条件下,可在工程上能够允许的一些假定条件下,可以描述成单变量(单输入单输出)的三阶以描述成单变量(
4、单输入单输出)的三阶线性系统,完全可以应用经典的线性控制线性系统,完全可以应用经典的线性控制理论和由它发展出来的工程设计方法进行理论和由它发展出来的工程设计方法进行分析与设计。分析与设计。但是,同样的理论和方法用来分析与设但是,同样的理论和方法用来分析与设计交流调速系统时,就不那么方便了,计交流调速系统时,就不那么方便了,因因为交流电机的数学模型和直流电机模型相为交流电机的数学模型和直流电机模型相比有着本质上的区别比有着本质上的区别。2.交流电机数学模型的性质交流电机数学模型的性质(1)异步电机变压变频调速时需要进行电压)异步电机变压变频调速时需要进行电压 (或电流)和频率的协调控制,有电压(
5、电流)(或电流)和频率的协调控制,有电压(电流)和频率两种独立的输入变量。在输出变量中,和频率两种独立的输入变量。在输出变量中,除转速外,磁通也得算一个独立的输出变量。除转速外,磁通也得算一个独立的输出变量。因为电机只有一个三相输入电源,磁通的建因为电机只有一个三相输入电源,磁通的建 立和转速的变化是同时进行的,为了获得良立和转速的变化是同时进行的,为了获得良 好的动态性能,也希望对磁通施加某种控制,好的动态性能,也希望对磁通施加某种控制,使它在动态过程中尽量保持恒定,才能产生使它在动态过程中尽量保持恒定,才能产生 较大的动态转矩。较大的动态转矩。l多变量、强耦合的模型结构多变量、强耦合的模型
6、结构 由于这些原因,由于这些原因,异步电机是一个多异步电机是一个多变量(多输入多输变量(多输入多输出)系统,而电压出)系统,而电压(电流)、频率、(电流)、频率、磁通、转速之间又磁通、转速之间又互相都有影响,所互相都有影响,所以是强耦合的多变以是强耦合的多变量系统,可以先用量系统,可以先用右图来定性地表示右图来定性地表示。A1A2Us1(Is)图图6-1异步电机的多变量、强耦合模型结构异步电机的多变量、强耦合模型结构 l 模型的非线性模型的非线性(2)在异步电机中,电流乘磁通产生转矩,)在异步电机中,电流乘磁通产生转矩,转速乘磁通得到感应电动势,由于它们都转速乘磁通得到感应电动势,由于它们都是
7、同时变化的,在数学模型中就含有两个是同时变化的,在数学模型中就含有两个变量的乘积项。这样一来,即使不考虑磁变量的乘积项。这样一来,即使不考虑磁饱和等因素,数学模型也是非线性的饱和等因素,数学模型也是非线性的。l 模型的高阶性模型的高阶性(3)三相异步电机定子有三个绕组,转子)三相异步电机定子有三个绕组,转子也可等效为三个绕组,每个绕组产生磁通也可等效为三个绕组,每个绕组产生磁通时都有自己的电磁惯性,再算上运动系统时都有自己的电磁惯性,再算上运动系统的机电惯性,和转速与转角的积分关系,的机电惯性,和转速与转角的积分关系,即使不考虑变频装置的滞后因素,也是一即使不考虑变频装置的滞后因素,也是一个八
8、阶系统。个八阶系统。总起来说,异步电机的动态数学总起来说,异步电机的动态数学模型是一个模型是一个高阶、非线性、强耦高阶、非线性、强耦合的多变量系统合的多变量系统。6.2 三相异步电动机的多变量非线性数学模型三相异步电动机的多变量非线性数学模型 假设条件:假设条件:(1)忽略空间谐波,设三相绕组对称,)忽略空间谐波,设三相绕组对称,在空间互差在空间互差120电角度,所产生的磁动电角度,所产生的磁动势沿气隙周围按正弦规律分布;势沿气隙周围按正弦规律分布;(2)忽略磁路饱和,各绕组的自感和)忽略磁路饱和,各绕组的自感和互感都是恒定的;互感都是恒定的;(3)忽略铁心损耗;)忽略铁心损耗;(4)不考虑频
9、率变化和温度变化对绕)不考虑频率变化和温度变化对绕组电阻的影响。组电阻的影响。物理模型物理模型 无论电机转子是绕线型还是笼型的,都无论电机转子是绕线型还是笼型的,都将它等效成三相绕线转子,并折算到定子将它等效成三相绕线转子,并折算到定子侧,折算后的定子和转子绕组匝数都相等。侧,折算后的定子和转子绕组匝数都相等。这样,实际电机绕组就等效成下图所示的这样,实际电机绕组就等效成下图所示的三相异步电机的物理模型。三相异步电机的物理模型。三相异步电动机的物理模型三相异步电动机的物理模型图图6-2三相异步电动机的物理模型三相异步电动机的物理模型ABCuAuBuC1 uaubucabc 图中,定子三相绕组轴
10、线图中,定子三相绕组轴线 A、B、C 在在空间是固定的,以空间是固定的,以 A 轴为参考坐标轴;转轴为参考坐标轴;转子绕组轴线子绕组轴线 a、b、c 随转子旋转,转子随转子旋转,转子 a 轴和定子轴和定子A 轴间的电角度轴间的电角度 为空间角位移为空间角位移变量。变量。规定各绕组电压、电流、磁链的正方向规定各绕组电压、电流、磁链的正方向符合电动机惯例和右手螺旋定则。这时,符合电动机惯例和右手螺旋定则。这时,异步电机的数学模型由下述电压方程、磁异步电机的数学模型由下述电压方程、磁链方程、转矩方程和运动方程组成。链方程、转矩方程和运动方程组成。1.电压方程电压方程三相定子绕组的电压平衡方程为三相定
11、子绕组的电压平衡方程为 tRiuddAsAAtRiuddBsBBtRiuddCsCC电压方程(续)电压方程(续)与此相应,三相转子绕组折算到定子侧后与此相应,三相转子绕组折算到定子侧后的电压方程为的电压方程为 tRiuddaraatRiuddbrbbtRiuddcrcc 上述各量都已折算到定子侧,为了简单起见,上述各量都已折算到定子侧,为了简单起见,表示折算的上角标表示折算的上角标“”均省略,以下同此。均省略,以下同此。式中式中Rs,Rr定子和转子绕组电阻定子和转子绕组电阻。A,B,C,a,b,c 各相绕组的全磁链;各相绕组的全磁链;iA,iB,iC,ia,ib,ic 定子和转子相电流的瞬时值
12、定子和转子相电流的瞬时值;uA,uB,uC,ua,ub,uc 定子和转子相电压的瞬时值;定子和转子相电压的瞬时值;电压方程的矩阵形式电压方程的矩阵形式 将电压方程写成矩阵形式,并以微分算子将电压方程写成矩阵形式,并以微分算子 p 代代替微分符号替微分符号 d/dtcbaCBAcbaCBArrrssscbaCBA000000000000000000000000000000piiiiiiRRRRRRuuuuuu(6-1a)或写成或写成 Riup(6-1b)2.磁链方程磁链方程 每个绕组的磁链是它本身的自感磁链和其它绕组每个绕组的磁链是它本身的自感磁链和其它绕组对它的互感磁链之和,因此,六个绕组的磁
13、链可表对它的互感磁链之和,因此,六个绕组的磁链可表达为达为 cbaCBAcCcbcacCcBcAbcbbbabCbBbAacabaaaCaBaACcCbCaCCCBCABcBbBaBCBBBAAcAbAaACABAAcbaCBAiiiiiiLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL(6-1)或写成或写成 Li(6-1a)l 电感矩阵电感矩阵式中,式中,L 是是66电感矩阵,其中对角线元素电感矩阵,其中对角线元素 LAA,LBB,LCC,Laa,Lbb,Lcc 是各有关是各有关绕组的自感,其余各项则是绕组间的互感。绕组的自感,其余各项则是绕组间的互感。实际上,与电机
14、绕组交链的磁通主要只有实际上,与电机绕组交链的磁通主要只有两类:一类是穿过气隙的相间互感磁通,另两类:一类是穿过气隙的相间互感磁通,另一类是只与一相绕组交链而不穿过气隙的漏一类是只与一相绕组交链而不穿过气隙的漏磁通,前者是主要的。磁通,前者是主要的。l 电感的种类和计算电感的种类和计算 定子漏感定子漏感 Lls 定子各相漏磁通所对应的电感,定子各相漏磁通所对应的电感,由于绕组的对称性,各相漏感值均相等;由于绕组的对称性,各相漏感值均相等;转子漏感转子漏感 Llr 转子各相漏磁通所对应的电感。转子各相漏磁通所对应的电感。定子互感定子互感 Lms与定子一相绕组交链的最大互与定子一相绕组交链的最大互
15、感磁通;感磁通;转子互感转子互感 Lmr与转子一相绕组交链的最大互与转子一相绕组交链的最大互感磁通。感磁通。由于折算后定、转子绕组匝数相等,由于折算后定、转子绕组匝数相等,且各绕组间互感磁通都通过气隙,磁阻且各绕组间互感磁通都通过气隙,磁阻相同,故可认为相同,故可认为 Lms=Lmr 自感表达式自感表达式 对于每一相绕组来说,它所交链的磁通对于每一相绕组来说,它所交链的磁通是互感磁通与漏感磁通之和,因此,定是互感磁通与漏感磁通之和,因此,定子各相自感为子各相自感为smsCCBBAAlLLLLL(6-2)转子各相自感为转子各相自感为 rmsccbbaalLLLLL(6-3)互感表达式互感表达式
16、两相绕组之间只有互感。互感又分为两类:两相绕组之间只有互感。互感又分为两类:(1)定子三相彼此之间和转子三相彼此)定子三相彼此之间和转子三相彼此之间位置都是固定的,故互感为常值;之间位置都是固定的,故互感为常值;(2)定子任一相与转子任一相之间的位置)定子任一相与转子任一相之间的位置是变化的,互感是角位移是变化的,互感是角位移 的函数。的函数。p 第一类固定位置绕组的互感第一类固定位置绕组的互感 三相绕组轴线彼此在空间的相位差是三相绕组轴线彼此在空间的相位差是120,在假定气隙磁通为正弦分布的条,在假定气隙磁通为正弦分布的条件下,互感值应为,件下,互感值应为,于是 msmsms21)120cos(120cosLLLmsACCBBACABCAB21LLLLLLL(6-4)msaccbbacabcab21LLLLLLLp 第二类变化位置绕组的互感第二类变化位置绕组的互感 定、转子绕组间的互感,由于相互间位置的变定、转子绕组间的互感,由于相互间位置的变化,可分别表示为化,可分别表示为 cosmscCCcbBBbaAAaLLLLLLL)120cos(msaCCacBBcbAAbLLLLLLL)