信号与系统实验报告--连续时间系统的复频域分析.docx

上传人:p** 文档编号:646983 上传时间:2024-01-02 格式:DOCX 页数:12 大小:174.34KB
下载 相关 举报
信号与系统实验报告--连续时间系统的复频域分析.docx_第1页
第1页 / 共12页
信号与系统实验报告--连续时间系统的复频域分析.docx_第2页
第2页 / 共12页
信号与系统实验报告--连续时间系统的复频域分析.docx_第3页
第3页 / 共12页
信号与系统实验报告--连续时间系统的复频域分析.docx_第4页
第4页 / 共12页
信号与系统实验报告--连续时间系统的复频域分析.docx_第5页
第5页 / 共12页
信号与系统实验报告--连续时间系统的复频域分析.docx_第6页
第6页 / 共12页
信号与系统实验报告--连续时间系统的复频域分析.docx_第7页
第7页 / 共12页
信号与系统实验报告--连续时间系统的复频域分析.docx_第8页
第8页 / 共12页
信号与系统实验报告--连续时间系统的复频域分析.docx_第9页
第9页 / 共12页
信号与系统实验报告--连续时间系统的复频域分析.docx_第10页
第10页 / 共12页
亲,该文档总共12页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

《信号与系统实验报告--连续时间系统的复频域分析.docx》由会员分享,可在线阅读,更多相关《信号与系统实验报告--连续时间系统的复频域分析.docx(12页珍藏版)》请在第壹文秘上搜索。

1、信号与系统实验报告连续时间系统的复频域分析实验五连续时间系统的复频域分析一、实验目的掌握拉普拉斯变换及其反变换的定义,并掌握MATLAB实现方法学习和掌握连续时间系统系统函数的定义及其复:频域分析方法掌握系统零极点的定义,加深理解系统零极点分布与系统特性的关系。二、实验原理与方法1、拉普拉斯变换连续时间信号X的拉普拉斯变换定义为:r+X(s)=Ix(t)estdtJ-OO拉普拉斯反变换为:+yx(t)=-X(s)*ds2町r-j8在MATLAB中可以采用符号数学工具箱中的IaPlaCe函数和il叩IaCe函数进行拉氏变换和拉氏反变换。1.=IaPlaCe(F)符号表达式F的拉氏变换,F中时间变

2、量为t,返回变量为S的结果表达式。1.=IaPlaCe(Et)用t替换结果中的变量SoF=ilaplace(L)以S为变量的符号表达式L的拉氏反变换,返回时间变量t的结果表达式。F=ilaplace(L,x)用X替换结果中的变量t。2、连续时间系统的系统函数连续时间系统的系统函数是系统单位冲激响应的拉氏变换+ooH(s)=Ih(t)estdtJ8此外,连续时间系统的系统函数还可以由系统输入和输出信号的拉氏变换之比得到H(s)=Y(s)X(s)单位冲激响应h(t)反映了系统的固有性质,而H(三)从复频域反映了系统的固有性质。对于H(三)描述的连续时间系统,其系统函数S的有理函数hfsM+%-lS

3、MT+)H一3+即一+3、连续时间系统的零极点分析系统的零点指使式H(三)的分子多项式为零的点,极点指使分母多项式为零的点,零点使系统的值为零,极点使系统函数的值无穷大。通常将系统函数的零极点绘在S平面上,零点用O表示,极点用X表示,这样得到的图形称为零极点分布图。由零极点的定义可知,零点和极点分别指H(三)的分子多项式和分母多项式的根。利用MATLAB求多项式的根可以通过函数roots来实现,该函数的调用格式为:r=root(c)c为多项式的系数向量,返回值r为多项式的根向量。此外,在MATLAB中还提供了更简便的方法来求取零极点和绘制系统函数的零极点分布图,即利用PZmaP函数,该函数的调

4、用格式为:pzmap(sys)绘出由系统模型SyS描述的系统的零极点分布图。p,z=pzm叩(SyS)这种调用方法返回极点和零点,而不绘出零极点分布图。其中SyS为系统传函模型,由t命令sys=tf(b,a)实现,b,a为传递函数的分子多项式和分母多项式的系数向量。MATLAB还为用户提供了两个专用函数tf2zp和zp2tf来实现系统传递函数模型和零极点增益模型的转换,其调用格式分别为z,p,k=tzp(b,a)、b,a=zp2tf(z,p,k)其中b、a为传递函数的分子多项式和分母多项式的系数向量,返回值Z为零点列向量,p为极点列向量,k为系统函数零极点形式的增益。研究系统函数的零极点分布不

5、仅可以了解系统冲激响应的形式,还可以了解系统的频率特性以及判断系统稳定性。1)零极点分布与冲激响应的关系系统的极点位置决定着系统冲激响应h(t)的波形,冲激响应的幅值是由系统函数的零点和极点共同确定的,系统零点位置只影响冲激响应的幅度和相位,不影响波形。2)零极点分布与系统频率响应关系系统函数的零极点分布不仅决定了系统函数H(s),也决定了系统的频率响应H(3),根据系统的零极点分布情况,可以由几何矢量法分析系统的频率响应。3)零极点分布与系统稳定性的关系稳定性是系统的固有性质,与激励信号无关,由于系统函数H包含了系统的所有固有性质,因而可以根据系统函数的零极点分布判断系统的稳定性。因果系统稳

6、定的充要条件是H(s)的全部极点位于S平面的左半平面。三、实验内容(1)已知系统的冲激响应h(t)=u(t)-u(t-2),输入信号x(t)=u(t),试采用复频域的方法求解系统响应,编写MATLAB程序实现。试采用MATLAB画出其零极点分布图,求解系统的冲激响应h(t)和频率响应H(),并判断系统是稳定。程序代码:SymSt;ht=heaviside(t)-heaviside(t-2);hs=Iaplace(ht);xt=heaviside(t);xs=Iaplace(xt);ys=xs*hs;yt=ilaplace(ys)ezplot(yt);实验结果:yt=t-heaviside(t-

7、2)*(t-2)(2)已知因果连续时间系统的系统函数分别如下: H(三)=s3+2s1s+1 H(三)-s5+2s4-3s3+3s2+3s+2程序代码:symssw;b=l;a=lz2z2,l;Hl=tf(bza);rzp,k=residue(bza)subplot(221);pzmap(Hl);subplot(222);Hwl=SUbs(1/(s3+2*s2+2*s+1)zszj*w)Htl=Haplace(1/(s3+2*s2+2*s+l)Hwl=Inline(Hwl);W=-IOjO.01:10;plot(WzHwl(W);实验结果:Htl=lexp(t)-(cos(3Nl2)*t)2)

8、-(3Nl2)*sin(3(l*t)3)exp(t2)Hwl=1/(-w3*i-2*w2+2*w*i+1)Pole-ZeroMap10.50-0.5-1-0.5Fteal Axis (seconds1)根据实验结果的零极点分布图可知,系统是稳定的。程序代码:b=l,0,l;a=l,2,-3,3,3,2;H2=tf(b,a);r,p,k=residue(b,a)subplot(223);pzmap(H2);subplot(224);Hw2=subs(s2+1)/(s5+2*s4-3*s3+3*s2+3*s+2)zs,j*w)Ht2=ilaplace(s2+l)/(s5+2*s4-3*s3+3*s

9、2+3*s+2)W=-10:0.01:10;Hw2=inline(Hw2);plot(W,Hw2(W);实验结果:Hw2=-(w2-l)(w5*i+2*w4+3*w3*i-3*w2+3*w*i+2)IIIVJX.Xrrr/、XRjle-Zero Map0.50( SPUOoeS) SlxV AJe6ElU-Ht2=sum(r52*exp(r5*t)(5*r54+8*r53-9*r52+6*r5+3),r5inRootOf(s55+2*s54-3*s53+3*s52+3*s5+2,s5)+sum(exp(r5*t)(5*r54+8*r53-9*r52+6*r5+3),r5inRootOf(s55

10、+2*s54-3*s53+3*s52+3*s5+2,s5)-2-10Fteal Axis (seconds-1)(3)已知连续时间系统函数的极点位置分别如下所示(设系统无零点)P=Op=-2p=2pi=2j,p2=-2jp1=-1+4j,p2=-1-4)Pi=1+4j,p2=147试用MATLAB绘制上述6种不同情况下,系统函数的零极点分布图,并绘制相应冲激响应的时域波形,观察并分析系统函数极点位置对冲激响应时域特性影响。程序代码:functionsolve5_3T=inputC函数个数T:,);SymSH;symss;fori=l:TN=input极点数N:);H=I;a=l;b=l;for

11、m=l:N=inut(,极点:,);H=H/(s-p);a=conv(azlz-p);endsys=tf(b,a);subplot(211);pzmap(sys);h=ilaplace(三)h=inline(h);subplot(212);t=-5:0.01:8;plot(tzh(t);end实验结果:Z*d4Wl实验结果:Pote-2roMjp*mpuoos)9VAJr,62-5OO.-1.01.4-12T-0.0RjA(soondr*)实验结果:024Pole-ZtroMjp0608112ReaIAxks(seconds1)Ol11L-6-4-202实验结果:Pole*ZeroMap05R

12、ejlAxb(secon)实验结果:-202(UO2S)9xv,.c6,一002-04Po-ZroMjp0806RuIAxis(s*oonds*1)-120Ij实验结果:由上面图形可以看出:当系统有一个0处极点时,时域为恒定值当系统有一个正极点时,时域为增长函数当系统有一个负极点时,时域为衰减函数当系统有两个有相同实部的极点时,时域为震荡函数,且其包络线增长规律满足一个极点时的情况(4)已知连续时间系统的系统函数分别如下:H(s)=H(三)=25+8H(三)=258)S2+2S+17、S2+2S+17S2+2s+17上述3个系统具有相同的极点,但是零点不同,试用MATLAB分别绘制系统的零极点

13、分布图及相应冲激响应的时域波形,观察并分析系统函数零点位置对冲激响应时域特性的影响。程序代码:functionsolve5_4T=input输入函数个数:a=input(,a=,);fori=l:Tb=input(,b=,);sys=tf(b,a);subplot(211);pzplot(sys);H=poly2sym(b,s,)poly2sym(a,s,);h=ilaplace(三);h=inline(h);t=-10:0.01:5;subplot(212);plot(tzh(t);end实验结果:SPUOQ; AXVAJ.2-0Q2Pole-Zero MjpOS 06Q4Ral Ax . 0 oon*400020000 20004000-6000-50-10实验结果:,gpuo3 1 XV26?-0-70Pole*Zero Mip54-3RcaI Axb (s econ1)-5Pcte-ZeroMap函数整体都呈现衰减趋势,零点绝对值越大函数幅值越大,零点为正时函数偏上,零点为负时函数偏下。四、实验心得和体会对于这个实验,在已有2次实验的基础上,对于MATLAB的程序代码更加熟悉,所以在使用MATLAB的时候就更加顺

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高等教育 > 大学课件

copyright@ 2008-2023 1wenmi网站版权所有

经营许可证编号:宁ICP备2022001189号-1

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。第壹文秘仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知第壹文秘网,我们立即给予删除!