《多面体外接球半径常见的5种求法1公开课教案教学设计课件资料.docx》由会员分享,可在线阅读,更多相关《多面体外接球半径常见的5种求法1公开课教案教学设计课件资料.docx(2页珍藏版)》请在第壹文秘上搜索。
1、多面体外接球半径常见的5种求法如果一个多面体的各个顶点都在同一个球面上,那么称这个多面体是球的内接多面体,这个球称为多面体的外接球.有关多面体外接球的问题,是立体几何的一个重点,也是高考考查的一个热点.研究多面体的外接球问题,既要运用多面体的知识,又要运用球的知识,并且还要特别注意多面体的有关几何元素与球的半径之间的关系,而多面体外接球半径的求法在解题中往往会起到至关重要的作用.公式法例1一个六棱柱的底面是正六边形,其侧棱垂直于底面,己知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为2,底面周长为3,则这个球的体积为86x=3,1XX棱柱的底面圆的半径r=L,球心到底面的距离d=史.外接球
2、的半径22R=yr2+d1=1.V球=”.3小结本题是运用公式卡求球的半径的,该公式是求球的半径的常用公式.多面体几何性质法例2已知各顶点都在同一个球面上的正四棱柱的高为4,体积为16,则这个球的表面积是A.16万B.20乃C.24;FD.32;T解设正四棱柱的底面边长为X,外接球的半径为R,则有4/=16,解得x=2.2R=22+22+42=26,:.R=疵.;,这个球的表面积是4R2=24笈.选C.小结本题是运用“正四棱柱的体对角线的长等于其外接球的直径”这一性质来求解的.补形法例3若三棱锥的三个侧面两两垂直,且侧棱长均为石,则其外接球的表面积是.解据题意可知,该三棱锥的三条侧棱两两垂直,
3、把这个三棱锥可以补成一个棱长为3的正方体,于是正方体的外接球就是三棱锥的外接球.设其外接球的半径为R,则有(ZR)?=(、万+(3)2=9.A?=;.故其外接球的表面积S=44r2=9.小结一般地,若一个三棱锥的三条侧棱两两垂直,且其长度分别为4、h.c,则就可以将这个三棱锥补成一个长方体,于是长方体的体对角线的长就是该三棱锥的外接球的直径.设其外接球的半径为R,则有2R=J2+c2寻求轴截面圆半径法例4正四棱锥S-ABCZ)的底面边长和各侧棱长都为J,点S、A、B、C、。都在同一球面上,则此球的体积为.解设正四棱锥的底面中心为0,外接球的球心为。,如图1所示.,由球的截面的性质,可得OOl,
4、平面ABeO./W又SO平面ABCZ),球心。必在Sol所在的直线上.A图3BASC的外接圆就是外接球的一个轴截面圆,外接圆的半径就是外接球的半径.在A45C中,由SA=SC=AC=2,得SA?+sc?=AC2.:,ASC是以AC为斜边的Rt.A-=I是外接圆的半径,也是外接球的半径.故V球=加.23小结根据题意,我们可以选择最佳角度找出含有正棱锥特征元素的外接球的一个轴裁面圆,于是该圆的半径就是所求的外接球的半径.本题提供的这种思路是探求正棱锥外接球半径的通解通法,该方法的实质就是通过寻找外接球的一个轴极面圆,从而把立体几何问题转化为平面几何问题来研究.这种等价转化的数学思想方法值得我们学习.确定球心位置法例5XXXABCO中,AB=4,3C=3,沿ACxxx4BCO折成一个直二面角B-AC-D,则四面体ABCQ的外接球的体积为A.12125B.9C.6125D.3解设矩形对角线的交点为0,则由矩形对角线互相平分,可知QA=QB=OC=Or).XX。到四面体的四个顶点4、B、。、。的距离相等,即点0为四面体的外接球的球心,如图2所示.外接球的半径R=OA=.故V球=-R3=丑3;T.选C.