《16Mn钢产生焊接裂纹的原因与预防毕业论文.doc》由会员分享,可在线阅读,更多相关《16Mn钢产生焊接裂纹的原因与预防毕业论文.doc(30页珍藏版)》请在第壹文秘上搜索。
1、毕业论文1 绪论目前,焊接技术广泛应用在工业生产中的各行各业,这种技术在生产领域无论是从产品质量,还是从工业效益的角度来讲,都是其他任何技术无法取代的。虽然焊接技术是通过加热或加压,或者两者并用并且用或不用填充材料使工件达到结合的一种方式,但是这种技术伴随着工件的加热、熔化、融合、冷却的过程,那么必然会在环境和应力作用下产生缺陷。1.1概述在焊接过程中,焊接接头中产生的金属不连续,不致密或连接不良的现象叫做焊接缺陷。焊接缺陷种类很多,有些是因施焊过程中的操作不当或焊接参数不正确造成的,如:咬边、烧穿、焊缝尺寸不足、未焊透等;有些是由于化学冶金,凝固或固态相变过程的产物而造成的,如:气孔、夹杂、
2、裂纹等,这些缺陷与母材和焊接材料的化学成分有着密切的关系。16Mn钢属于合金结构钢,是在碳素钢的基础上加入一种或几种合金元素冶炼而成。加入合金元素的目的,是在保证足够的塑性和韧性的基础上获得较高的强度或满足结构工作条件提出的某些特殊要求。在16Mn钢的焊接中产生缺陷主要侧重在焊接裂纹方面,同时焊接裂纹也是这种钢产生焊接缺陷中最严重的一种。目前,在焊接结构制造中,16Mn钢主要用于制造压力容器、桥梁、船舶、大型金属结构及矿山冶金设备上的大型零部件。1.2 焊接缺陷的分类由常见金属材料的焊接可知,缺陷主要分为两大类:焊件使用时发生的缺陷,焊接过程缺陷。1焊件使用时发生的缺陷,这种缺陷通常指焊接热循
3、环损伤到焊道或邻近的热影响区而造成焊件性质劣于母材。当焊件使用时,破裂起始于这些缺陷存在原位置。比较常见的缺陷有碳钢或低合金钢的热影响区晶粒受热而长大造成韧性显著下降,析出硬化型材料的热影响区。因过度时效而使强度降低。冷作硬化型材料的热影响区,因冷作作用消失而使强度降低。2焊接过程缺陷,这类缺陷发生于焊接进行中或焊接完成后,常见的缺陷有裂纹、气孔、夹渣、凹陷、熔焊不足、渗透不足等。这类缺陷的存在可能造成焊件无法使用。这其中又以裂纹最为严重。裂纹因发生的温度不同有如下几种:冷裂纹(氢裂纹)、焊后热处理裂纹(再热裂纹)、延性不足裂纹、热裂纹和层状撕裂等。1)冷裂纹常出现在碳钢和合金钢的焊接中,但在
4、焊接双相不锈钢有是也出现冷裂纹。虽然产生冷裂纹的原因还没有完全了解,这种裂纹已大部分可以控制。最有效的方法是减少氢含量、预热,控制热输入及利用焊后热处理。只要材料和接头方式确定,目前已有简单的方法可以在预热温度、热输入范围、焊后热处理的温度和时间等方面来防止产生冷裂纹。2)焊后热处理裂纹出现在焊后应力消除热处理的加热过程中,这种裂纹发生于镍基合金、不锈钢和少数合金钢。机械化焊接方法同精密焊接设备结合的方法可以防止坡口发生位移,避免焊接区在能量集中的作用下产生明显的扩张应力。扩大射束能源利用范围和制订合理的焊接后热处理规范,可以满足焊缝金属的力学性能,从而满足材料的可焊性。设计制造高效的焊接装置
5、可以提高焊接效率,需要对焊接构件通电流加热焊接区,为此要制订适当工艺。除此外,要对材料分析之后掌握其焊接性能可能会出现的裂纹,采取相应的必要措施进行焊后热处理等消除焊缝在冷却过程中产生应力而造成的各种裂纹。3)层状撕裂是一种出现在钢的轧制方面的一种特殊裂纹,对于这种裂纹除要在焊接工艺方面采取措施外,主要还是在选材方面,主要是改变因焊接过程中结晶组织产生的应力方向上下功夫。本论文用金属材料的焊接性及熔焊原理的基础知识,首先根据常见焊接应力与变形、热裂纹、层装状撕裂、冷裂纹等,分析其影响因素,然后根据焊接缺陷产生原因,在焊接材的选择、焊接结构的设计和焊接工艺的编制采取相应的对策。2 焊接裂纹的分类
6、在焊接生产中,由于母材和接构形似不同可能出现各种各样的裂纹。然而其分类方法很多,可按裂纹走向产生区域及产生的条件划分常按其产生的条件可分为:焊接热裂纹、焊接冷裂纹、消除应力裂纹、层状撕列等。2.1 焊接热烈纹焊接热裂纹在焊接过程中焊缝和热影响区金属冷却到固相线附近的高温区产生的裂纹。焊接热烈纹又可分为:结晶裂纹、液化裂纹、高温失塑性裂纹。2.1.1 结晶裂纹结晶裂纹又叫凝固裂纹,主要产生于焊缝凝固过程中,当冷却到固相线温度附近时,由于凝固金属的收缩残余金属不足而不能及时填充,在应力作用下发生晶间开裂,如下图21所示:图2-1 结晶裂纹结晶裂纹主要产生在含杂质(S、P、C、Si)偏高的碳钢、低合
7、金钢以及单相奥氏体钢镍基合金与某些铝合金的焊接中。一般沿焊缝树枝晶状的交界处发生和扩展常见于焊缝中心沿焊缝长度扩展的纵向裂纹有时也分布在两个树枝晶粒之间。2.1.2 高温液化裂纹高温液化裂纹在高温下产生,钢材和多层焊的间金属含有低熔点化合物经重新熔化在收缩应力作用下沿奥氏体晶间开裂的一种裂纹。如下图22所示: 图22 高温液化裂纹这种裂纹一般出现在含S、P、C较多的高镍低锰的高强钢、奥氏体钢、镍铬合金钢的焊接中。2.1.3 多边液化裂纹多变液化裂纹产生于温度低于固相线温度,存在晶格缺陷(位错和空隙)物理化学性不均匀,在应力作用下缺陷聚集形成多边化边界,使强度塑性下降,沿多边化边界开裂而形成一种
8、裂纹。如下图23所示:图23 多边液化裂纹这种裂纹多发生在纯金属或单相奥氏体合金的焊接中。2.2 焊接冷裂纹焊接冷裂纹是在焊接接头冷却到较底温度(即在Ms温度以下)时产生的裂纹。宏观上冷裂纹的断口具有脆性断裂特征,表面有金属光泽,呈人字形态发展;从微观上看,裂纹多起源于粗大奥氏体晶粒的交界处。然而冷却到裂纹按其钢的结构不同又可分为以下三类:延迟裂纹、淬硬化裂纹(或淬火裂纹)、低塑性脆化裂纹。2.2.1 延迟裂纹延迟裂纹是在焊后经过数小时或更长时间才出现的冷裂纹,延迟裂纹主要是发生在热影响区和焊后的固相线温度以下,焊后不会立即出现而是有一段孕育期产生延迟现象才出现的沿晶或穿晶裂纹。如下图24所示
9、:图24 延迟裂纹这种裂纹主要出现在中、高碳钢,低、中合金钢及钛合金的焊接中。2.2.2 淬硬脆化裂纹淬硬脆化裂纹是在固相线温度附近在热影响区或少量焊缝中含有较大淬硬倾向的组织物而产生一种沿晶或穿晶裂纹。这种裂纹出现在含碳的NiCrMo钢、马氏体不锈钢、工具钢的焊接中。低塑性液化裂纹温度在400以下,由于收缩应变超过了金属材料本身的塑性而在热影响区以及焊缝中产生的沿晶或穿晶的一种裂纹。这种裂纹一般出现在铸铁、堆焊硬质合金的焊接中。2.2.3 消除应力裂纹消除应力裂纹,厚板结构进行600700的回火消除应力处理在热影响区的粗晶区粗存在不同程度的应力集中时,由于应力松弛所产生的附加变形大于该部位的
10、蠕变塑性而沿晶界开裂形成的一种裂纹。如下图25所示:图25 消除应力裂纹这种裂纹一般出现在含有沉淀强化元素的高强钢、珠光体钢、奥氏体钢、镍基合金的焊接中。2.3 层状撕裂层状撕裂是由于轧制母材内部存在有分层的夹杂物(特别是硫化物夹杂物)和焊接时产生的垂直轧制方向的应力,在400的温度下,使热影响区附近地方产生呈“台阶”状的层状断裂并有穿晶发展而形成的在焊接结构中沿钢板轧曾形成的成阶梯状的一种穿晶或沿晶开裂的裂纹。如下图26所示: 图26 层状撕裂这种裂纹易出现在含有杂质的低合金高强度钢厚板结构的焊接中。2.4 应力腐蚀裂纹应力腐蚀裂纹,在某些焊接结构(如容器和管道等)的金属材料在某些特定介质和
11、拉应力共同作用下所产生的延迟破坏现象而在焊缝和热影响区而形成的一种沿晶或穿晶开裂的裂纹。如下图27所示: 图27 应力腐蚀裂纹 这种裂纹主要出现在碳钢、低合金钢、不锈钢、铝合金的焊接中。3 16Mn钢的化学组织与性能3.1 16Mn钢的化学组织与力学性能表31 16Mn钢的化学成分如下表:牌号化 学 成 份 ()CSiMnSP16Mn0.100.180.200.601.201.600.0450.050表32 16Mn钢的力学性能牌号热处理状态 力学性能SMpa(Kgf/mm2)bMpa(Kgf/mm2)AKUJ(Kg/fm)16Mn热轧343(35)490(50)2159(6)屈服强度为294
12、392MPa(3040Kgf/mm2)的低合金钢基本上都属于热轧钢,主要通过合金元素的固溶强化获得的较高的强度,锰是最常用的合金元素,在低碳的情况下Mn含量不大于1.6。Si的含量不大于0.6可以保持较高的塑性和韧性。热轧钢的组织为铁素体和珠光体,然而16Mn刚作为低温容器用钢或厚板结构时可以再正火条件下供货,经正火处理可以使钢的化学成分均匀化使时塑性和韧性提高,但强度又略有下降。3.2 16Mn钢的焊接性钢的焊接性决定着其焊接难易程度也是其产生裂纹的主要原因。16Mn钢的焊接性主要由碳当量、过热区脆化、热应变脆化、冷裂纹敏感性、热裂纹敏感性、层状撕裂倾向等决定其焊接程度及焊接质量。3.2.1
13、 碳当量碳当量的计算根据国际焊接学会推荐的低合金钢的碳当量计算公式如下: 根据表31 16Mn钢的化学成分可计算其碳当量16Mn钢的式中各元素含量取平均值,当钢的碳当量时,通常情况下可焊性好。但16Mn钢的,焊接时就容易产生裂纹。3.2.2 过热区脆化 过热区脆化又称为粗晶区脆化,在过热区的加热温度在1200固相温度范围内,高的加热温度造成奥氏体晶粒严重粗化及难溶质点溶入固溶体引起的过热。过热区脆化的程度与碳有关,过热区韧性随线能量E的增大而下降,线能量的增加使奥氏体晶粒的粗化更严重。冷却后会出现魏氏组织,适当降低线能量有助于提高韧性,因此可以选择小的线能量进行防止过热区脆化。3.2.3 热应
14、变脆化热应变脆化是在焊接过程中在热和应变同时作用下产生一种应变实效。它是由固溶的碳和氮聚集在位错周围对位错造成钉轧作用所引起的,一般在200400,焊接接头区及最高加热温度低于的亚临界热影响区。焊后热处理可以消除应脆化使材料的韧性可以恢复到原有水平,实验数据表明:16Mn钢焊后经6001退火处理韧脆转变温度比焊前提高53,说明有一定的热应变倾向。3.2.4 冷裂纹敏感性冷裂纹敏感性,焊接氢致裂纹(通常称为焊接冷裂纹或延迟裂纹)是16Mn钢焊接时最容易产生的而且危害是最威严重的工艺缺陷。它常常是焊接结构失效破坏的主要原因。这种钢产生的氢致裂纹主要发生在焊接热影响区,有时也出现再焊缝金属中。可能在
15、焊后200以下立即发生或焊后一段时间内产生,大量研究表明当焊接热影响区中产生脆硬马氏体或马氏体贝氏体铁素体混合组织时对氢致裂纹比较敏感。然而热影响区最高硬度可被用来粗略的评定焊接氢致裂纹敏感性。3.2.5 热裂纹敏感性16Mn钢中、较低,且较高,其热裂纹倾向小。但有时也会在焊缝中出现热裂纹,如厚壁压力容器焊接中在多层多道埋弧焊缝的根部焊道或靠近坡口边缘的高稀释率焊道中易出现焊缝金属热裂纹。3.2.6 层状撕裂倾向层状撕裂倾向,在大型厚板结构中如海洋工程、核反应堆和船舶等焊接时,若在钢材厚度方向承受较大的拉伸应力,可能沿钢材轧制方向发生阶梯状的层状撕裂。4 16Mn钢焊接裂纹产生的原因及防止的措施根据对焊接裂纹分类的了解及16Mn钢的化学组织与力学性能的熟悉和对其焊