森防垂起无人机飞行过程中主动安全性技术研究.docx

上传人:p** 文档编号:960038 上传时间:2024-06-05 格式:DOCX 页数:6 大小:55.89KB
下载 相关 举报
森防垂起无人机飞行过程中主动安全性技术研究.docx_第1页
第1页 / 共6页
森防垂起无人机飞行过程中主动安全性技术研究.docx_第2页
第2页 / 共6页
森防垂起无人机飞行过程中主动安全性技术研究.docx_第3页
第3页 / 共6页
森防垂起无人机飞行过程中主动安全性技术研究.docx_第4页
第4页 / 共6页
森防垂起无人机飞行过程中主动安全性技术研究.docx_第5页
第5页 / 共6页
森防垂起无人机飞行过程中主动安全性技术研究.docx_第6页
第6页 / 共6页
亲,该文档总共6页,全部预览完了,如果喜欢就下载吧!
资源描述

《森防垂起无人机飞行过程中主动安全性技术研究.docx》由会员分享,可在线阅读,更多相关《森防垂起无人机飞行过程中主动安全性技术研究.docx(6页珍藏版)》请在第壹文秘上搜索。

1、森防垂起无内几飞行过程中主动安全雌术研究图1系统整体框架小意图摘要:基于森防任务区域地势复杂、幅员辽阔等因素以及无人机飞行事故特点,文章提出通过自动避障、路径规划、ADS-B系统、仿地飞行等主动安全性设计,为后续森防无人机飞行过程中安全管理框架的构建奠定基础。关键词:森防无人机;ADS-B;避障雷达;双目下视;仿地飞行一、垂起无人机森防的场景应用我国民用无人机产业在2016年产值已达到150亿元,近年来行业产值更是迅猛发展,其在抢险救灾、环境监测、航拍测绘、物流运输、农林植保、个人消费等诸多领域得到了广泛应用。作为新近崛起的潜力装备,无人机以其强大的功能和独特的应用价值收获了应急、森防、消防部

2、门的高度青睐,2021年应急管理部科技和信息化司发布应急管理综合行政执法装备配备标准(试行),在应急森防等综合管理配备表中,亦将无人机列入。垂起无人机具备建造和使用成本低、地勤保障要求低、人员安全风险小等特点,同时其技术的不断创新,其品质、性能的不断提升,以及价格的趋于合理,使得垂起无人机在森防领域的应用变得愈来愈多,当前我国各地森防部门以此来加强日常巡查、火场侦查、空中通信、辅助救援等业务已成为常态。无人机可搭载可见光视频图像和热成像视频图像吊舱荷载,配合Al林火识别算法,一方面,对重点防火区域每天进行常规巡查覆盖,充分响应“打早、打了”的防火目标,对于森林中的地下火或者茂密枝叶掩盖下的林火

3、进行巡查预警,还可重点对人员进山、野外用火等情况进行巡查。另一方面,无人机能对火情态势从空中进行持续观察,使灭火指挥部门能够迅速有效地组织力量部署,提高灭火作战效率,减少救火人员的伤亡。二、主动安全性技术概述(一)安全性技术研究的必要性随着无人机产业在各行业场景迅速发展,无人机事故发生造成的大量经济损失,严重威胁着公共安全和国家安全,引起了社会的广泛关注。从2006年无人机行业迅猛发展,无人机使用量激增,无人机的飞行事故总量逐渐上升,其后随着平台、飞控、航电、材料、工艺、结构件等技术发展,使无人机事故率保持稳定而略呈下降的总趋势。无人机安全性能的提高,依赖于无人机系统各分项技术进步与整体管理水

4、平的综合提高,是基于安全性完成分析、设计、验证等全过程管理技术相结合的结果。无人机的飞行事故除了受任务系统、任务规划与地面控制站、特定的起降设备和数据链路等多种自身飞行系统因素的影响,还会受到使用环境条件、执行任务等的影响。事故的主导因素常常并非单一因素,而是多种因素关联影响造成。一般而言,无人机事故中最常见的原因之一便是驶员操作失误,根据数据统计人为操作因素约占到无人机事故总量的31%o具体到不同型号无人机则可能有差异,如美国RQ-7、RQ-5,人为因素的事故率分别占21%和47%。因此,在设计过程中针对确定的人为因素进行安全性设计,可以很大程度减少人为因素导致的事故。(二)主动安全技术的范

5、围无人机整体的安全性包括结构安全性设计、电气安全性设计、原材料与元器件选用安全性管理、应急处理措施以及使用管理安全性控制等要求。其安全性设计与系统研制同步开展,同步设计,同步验证,一般包括:1 .无人机系统安全性设计应与产品功能、性能、预期使用环境等要素进行综合权衡,通过安全性分析,确定安全性设计方案,并进行相关设计验证;2 .无人机系统应设计相关的设备、程序或人机界面以应对可能出现的紧急情况;3 .应进行区域安全性分析或检查,对邻近系统、设备或部件的故障影响采取相应措施;4 .应对影响无人机系统安全的部位进行标识;5 .应按使用要求配置必要的检测和声光警告装置;6 .与安全有关的事项,应在使

6、用维护相关技术资料中作出明显标识。本研究则是在无人机系统中已集成搭载IMU、GPS,地磁等传感器成熟性技术方案的基础上,侧重通过加装自动避障、感知飞行器及三维仿地飞行等主动安全性设计,从感知障碍、绕过障碍、主动航线规避等多维度实现在垂起无人机飞行过程中的安全保障。三、主动安全技术实现路线(一)系统整体架构在包含图传天线、数传天线、飞行控制系统、地面站系统、载荷、无线通信链路等通用组成部分外,本文设计的主动安全技术系统结构示意图如图1所示。基于自动避障、仿地飞行等主动安全技术的无人机系统主要涉及机载分系统、飞行控制系统(简称飞控)、地面站控制系统、无线通信链路,其各部分的任务和联系如下:机载分系

7、统主要包括在飞行平台中搭载双目视觉系统、毫米波避障雷达系统、ADS-B系统,完成自动避障过程中障碍物感知的任务,通过感知外部飞行器、前方及下方障碍物等实时环境数据,并将数据提交飞控系统或通过无线通信链路进行数据回传。地面站控制系统负责对采集到的图像信息进行分析,在发现威胁之后,及时发送指令给飞控系统;飞控系统收到指令之后,通过控制无人机的速度、航向等完成障碍规避。无线通信链路则负责实现各子系统之间有关控制指令、回传数据的无线通信传输,对其他几个部分起到了通信桥梁的作用。(二)机载分系统1 .分系统概述机载分系统中搭载的视觉系统位于飞行器任务舱底部,由一组双目摄像机组成;毫米波雷达系统位于任务舱

8、底部和前部,由毫米波测距传感器组成;搭载ADS-B系统可实时感知160公里范围内的飞行器,实现威胁预警。飞行器迫降时,视觉系统通过计算机视觉算法感知飞行器下方环境,实时检测障碍物的距离和轮廓,规避障碍物并自主选择良好的降落点。毫米波雷达系统通过测距感知飞行器前、下方障碍物,并实时自动规避。2 .毫米波雷达系统毫米波雷达系统基于面向人机安全交互的智能避障技术。飞行平台外壳内部的前方及下方内侧分别安装有毫米波雷达传感器,承载外壳内部位于雷达传感器之间安装有控制模块。毫米波雷达是利用电磁波探测目标的电子设备,通过发射电磁波对目标进行照射并接收其回波,由此获得目标至电磁波发射点的距离、方位、角度等信息

9、。在起飞、飞行、降落各阶段实时感知障碍物,如检测到障碍物,无人机可立即改变飞行路径,保障飞行安全。毫米波雷达避障系统通过毫米波雷达感知障碍物距离,然后通过避障模块进行判断,当满足设定条件时进行避障控制。避障模式分为前向避障和下向避障。其测距范围为0.5240m;其波束宽度:方位面28。,俯仰面18。,因前视避障和后视避障安装方位差异,如图2所示:3 .双目视觉系统双目视觉系统采用两个相同型号的CCD摄像头组合而成,搭载于无人机平台下方。通过双目摄像头视觉系统进行障碍物识别,对飞行过程中下方的障碍物进行检测,获取外部环境图像信息。双目相机采用全时期检测障碍物模式,其实际视场角:左右60。,前后4

10、0。;实际探测距离为50m。当发现障碍物时,通过双目摄像机各获得一张障碍物的图像,利用视差原理、产生的立体视觉信息和视觉算法,以此获得障碍物的三维空间坐标计算值,进而可获得该障碍物的深度值,基于所获取到的深度值得到无人机与障碍物之间的距离。若无人机降落时,当离地50m时开始自动进行降落黠智能筛选、地形智能感知,当探测到屋顶、悬崖等降落地时实时规避,确保飞行器安全降落。4 .ADS-B系统ADS-B系统是集通信与监视于一体的信息系统,是广播式自动相关监视系统(AutomaticDependentSurveillance-Broadcast)的简称,由信息源、信息传输通道和信息处理与显示三部分组成

11、。它把冲突探测、冲突避免、冲突解决、ATC(空中交通管制,AirTrafficControl)监视和ATC一致性监视以及机舱综合信息显示有机地结合起来。配备有ADS-B的垂起无人机在飞行过程中,发现160公里范围内威胁预警,同时飞机通过调整高度或飞行方向的方式,实现自动规避,确保飞行安全。机载电子设备包括GPS接收机、数据链收发机及其天线、驾驶舱冲突信息显示器CDTI,装配后不需要任何地面辅助设备即可完成相关功能。(三)飞行控制系统无人机飞控是无人机的大脑,是指能够稳定无人机飞行姿态,并能控制无人机自主或半自主飞行的控制系统。垂起无人机的飞行控制主要包括方向、副翼、升降、油门、襟翼等控制舵面,

12、通过舵机改变飞机的翼面,产生相应的扭矩,控制飞机转弯、爬升、俯冲、横滚等动作。各机载分系统模块间通过ROS消息(TCP)的通信模式,与飞控采用SPl通信方式(SerialPeripheralInterface,串行外设接口)。飞控与地面站系统主要交付是一方面接收地面站的用户指令,另一方面向地面站回传航测或视觉数据。其与机载分系统交付主要是为机载分系统提供GPS信息、离线高层、飞行状态、各分系统开关指令、雷达测距指令等,同时接收各分系统的相机/系统状态、测距数据、视觉数据等,供飞控系统内部判断和控制无人机航线及飞行姿态。(四)地面站控制系统地面站控制系统是通过无线链路与机载设备(指飞控设备)双向

13、通信,接收复合遥测数据并通过网络传输给控制终端,接收控制终端的指令和数据并通过无线链路传输给机载设备等;控制终端的作用是从基站接收、处理和显示遥测数据(实现飞行状态监控以及视频图像显示等),进行飞行任务规划等。基于高精度数字三维地图的地形环境设计航线,在飞行线路上自动感知获取隙碍物坐标信息,可实现低成本、常态化的森防火情巡查、应急勘测、故障线路影像获取等执飞任务,具有快速进行航线规划、一键匹配航线高度,生成仿地飞行航线、多种线路坐标格式导入导出等功能。借助此功能,垂起无人机能够适应更多的地形,利用快速全局路径搜索、路径规划和碰撞检测算法,根据测区自动生成变高航线,实现点对点智能地形匹配飞行,保持地面分辨率一致,从而获得更好的数据效果及飞行安全控制。四、结语通过视觉系统、毫米波雷达系统及ADS-B系统技术进行优势互补,无人机可具备全天候、全地形的全场景环境感知能力,继而为危险地形、障碍物的及时规避提供了足够的时间,从而提高了飞行过程中的安全系数,共同保证垂起无人机在森防飞行过程中的执飞与降落安全。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 论文 > 毕业论文

copyright@ 2008-2023 1wenmi网站版权所有

经营许可证编号:宁ICP备2022001189号-1

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。第壹文秘仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知第壹文秘网,我们立即给予删除!