《相似三角形解题方法、步骤(教师版).docx》由会员分享,可在线阅读,更多相关《相似三角形解题方法、步骤(教师版).docx(4页珍藏版)》请在第壹文秘上搜索。
1、相似三角形解题方法、技巧、步骤一、相似、全等的关系全等和相似是平面几何中研究直线形性质的两个重要方面,全等形是相似比为1的特殊相似形,相似形那么是全等形的推广.因而学习相似形要随时与全等形作比拟、明确它们之间的联系与区别;相似形的讨论又是以全等形的有关定理为根底.二、相似三角形(1)三角形相似的条件:;.三、两个三角形相似的六种图形:只要能在复杂图形中识别出上述根本图形,并能根据问题需要摩加适当的辅助线,构造出根本图形,从而使问题得以解决四、三角形相似的证题思路I判定两个三角形相似思路:1)先找两对内角对应相等(对平行线型找平行线),因为这个条件最简单;2)再而先找一对内角对应相等,且看夹角的
2、两边是否对应成比例;3)假设无对应角相等,那么只考虑三组对应边是否成比例:、工找另一一角两角对懵相等,两三角形相似I找夹边对应成比例两边对付战比例且夹角相等,两三角形相似找夹角相等两边对苑成比例且夹角相等,两三角形相似b)己知两边对应成I:H找第三边也对应成比例三边用戒比例,两三角形相似J找一个直角斜曲直角边对应成比例,两个直角三角形相似、口“人士找另一角两角的田理等,两三角形相似C)己知一个直YI找两边对应成比例判定定厘或判定定理4“找顶角对应相等判定定理d)有等腰关找底角对应相等判定定理十、找底和腰对应成比例判定定理好e)相似形的传递性假设As2,23,那么s3五、“三点定形法”,即由有关
3、线段的三个不同的端点来确定三角形的方法。具体做法是:先看比例式前项和后项所代表的两条线段的三个不同的端点能否分别确定一个三角形,假设能,那么只要证明这两个三角形相似就可以了,这叫做“横定”;假设不能,再看每个比的前后两项的两条线段的两条线段的三个不同的端点能否分别确定一个三角形,那么只要证明这两个三角形相似就行了,这叫做“竖定”。有些学生在寻找条件遇到困难时,往往放弃了根本规律而去乱碰乱撞,乱添辅助线,这样反而使问题复杂化,效果并不好,应当运用根本规律去解决问题。A例1、:如图,AABC中,CE_1.AB,BF_1.AC.求证:AEACEAXAFBA(判断“横定”还是“竖定”?)例2、如图,C
4、D是RlZXABC的斜边AB上的高,NBAC的平分线分别交BC、CD于点E、F,ACAE=AF*AB吗?说明理由。分析方法:1)先将积式(“横定”还是“竖定”?)例1、:如图,ZkABC中,NACB=90,AB的垂直平分线交AB于D,交BC延长线于求证:CD2=DEDFo分析方法:1)先将积式.2)(“横定”还是“竖定”?)六、过渡法(或叫代换法)有些习题无论如何也构造不出相似三角形,这就要考虑灵活地运用“过渡”,其主要类型有三种,下面分情况说明.1、等量过渡法(等线段代换法)遇到三点定形法无法解决欲证的问题时,即如果线段比例式中的四条线段都在图形中的同一条直线上,不能组成三角形,或四条线段虽
5、然组成两个三角形,但这两个三角形并不相似,那就需要根据条件找到与比例式中某条线段相等的一条线段来代替这条线段,如果没有,可考虑添加简单的辅助线。然后再应用三点定形法确定相似三角形。只要代换得当,问题往往可以得到解决。当然,还要注意最后将代换的线段再代换回来。例1:如图3,AABC中,AD平分NBAC,AD的垂直平分线FE交BC的延长线于E.求证:DE2=BECE.分析:2、等比过渡法(等比代换法)当用三点定形法不能确定三角形,同时也无等线段代换时,可以考虑用等比代换法,即考虑利用第三组线段的比并进行代换,然后为比例式搭桥,也就是通过对条件或图形的深入分析,找到与求证的结论中某个比相等的比,再用
6、三点定形法来确定三角形。例2:于点F.如图4,在AABC中,NBAC=90。,ADBC,E是AC的中点,ED交AB的延长线求证:ABDFACAF3、等积过渡法(等积代换法)思考问题的根本途径是:用三点定形法确定两个三角形,然后通过三角形相似推出线段成比例;假设三点定形法不能确定两个相似三角形,那么考虑用等量(线段)代换,或用等比代换,然后再用三点定形法确定相似三角形,假设以上三种方法行不通时,那么考虑用等积代换法。例3:如图5,在AABC中,NACB=90。,CD是斜边AB上的高,G是DC延长线上一点,过B作BE_1.AG,足为E,交CD于点F.求证:CD2=DFDG.小结:证明等积式思路口诀
7、:“遇等积,化比例:横找竖找定相似;不相似,不用急:等线等比来代替J同类练习:1 .如图,点D、E分别在边AB、AC上,且/ADE=NC垂BA求证:(1)DEACB;(1题图)(2题图)2 2)ADB=EC.2 .如图,ZUBC中,点DE在边BC上,且AADE是等边三角形,NBAC=I20求证:(1)DBCEA;2、DE2=BDCE:ABC=ADBC.3 .如图,平行四边形ABCD中,E为BA延长线上一点,ND=NECA.求证:DEC=ACEB.(此题为陷阱题,应注意条件中唯一的角相等,考虑平行四边形对边相等,用等线替代思想解决)4 .如图,AD为AABC中NBAC的平分线,EF是AD的垂直平
8、分线。求证:FD2=FCFBo(此题四点共线,应积极寻找条件,等线替代,转化为证三角形相似J5 .如图,E是平行四边形的边DA延长线上一点,EC交AB于点G,交BD于点F,求证:FC2=FGEF.(此题再次出现四点共线,等线替代无法进行,可以考虑等比替代J6 .如图,E是正方形ABCD边BC延长线上一点,连接AE交CD于F,过F作FMBE交DE于M.求证:FM=CF.(注:等线替代和等比替代的思想不局限于证明等积式,也可应用于线段相等的证明。此题用等比替代可以解决。)7 .如图,ABC中,AB=AC,点D为BC边中点,CEAB,BE分别交AD、AC于点F、G,连接FC.求证:(1)BF=CF.
9、(2) BF2=FGFE.(练习题图)(8 .如图,NABC=90,AD=DB,DEAB,求证:DC2=DEDF.9 .如图,ABCD为直角梯形,ABCD,AB_1.BC,AC_1.BD。D=BD,过E作EFAB交AD于F.是说明:(1)AF=BE:(2)AF2=AEEC.10 .BC中,ZBAC=90o,DBC,E为AC中点。求证:AB:AC=DF:AF。11.,CE是RTAABC斜边AB上的高,在EC延长线上任取一点P,连接AP,作BG_1.AP,垂足为G,交CE于点D.试证:CE2=EDEP.(注:此题要用到等积替代,将CE?用射影定理替代,再化成比例式。)nE七、证比例式和等积式的方法
10、:对线段比例式或等积式的证明:常用“三点定形法”、等线段替换法、中间比过渡法、面积法等.假设比例式或等积式所涉及的线段在同一直线上时,应将线段比“转移”(必要时需添辅助线),使其分别构成两个相似三角形来证明.可用口诀:遇等积,改等比,横看竖看找关系:三点定形用相似,三点共线取平截:平行线,转比例,等线等比来代替;两端各自找联系,可用射影和园寿.例1如图5在AABC中,AD.BE分别是3C、AC边上的高,1.AB于H交AC的延长线于“,交BE于G,求证:(1)FG/项=九8/a/(2)尸是/G与/7/的比例中项.A1说明:证明线段成比例或等积式,通常是借证三角形相似.找相似三角形用三点定形法(在
11、比例电横者找三点,或竖着找三点),假设不能找到相似三角形,应考虑将比例式变形,找等积式代换,或直接找等以输e例2如图6,oABCD,E是BC上的一点,AE交BD于点F,BE:EC=3:1.2说明:线段5F、三点共线应用平截比定理.由平行四边形得出两线段平行且相竽再比定喝蛀匕2Safbe=18,求:(1)8/:FD(2)SAFDA,小线段成比例、三角形相似;由比例合比性质转化为所求线段的比;由面积比等于相似比取平分求少/1形的夕积例3如图7在AABC中,AD是BC边上的中线,M是A。的中点,CM的延长线,AB#*Z:AN:心的值;3说明1求比例式的值,可直接利用一知的比例关系或是借助己知条件中的
12、平行心找东比i.当条状中的比例关系不够用时,还应添作平行线,再找中间比过渡.例4如图8在矩形ABC。中,E是。的中点,Bf1.1.AC交AC于凡过F作FGAFFC4说明:证明线段的等积式,可先转化为比例式,再用等线段替换法,然后利用“三点定形法”确定要证明的两个三角形相似.、例5如图在人BC中,。是BC边的中点,且Ao=AaDE1.BC,交AB于点E,EC交AD于点F.求证:AABCS/。;(2)假设SAFe=5,BC=IO,求DE的长.交A8于点BI-.,5说明,要证明两个三角形相似可由平行线推出或相似三角形的判定定理得两个三角形相似.再由相似三角形的面积比等于相似比的平方及比例的根本性质得
13、到线段的长.例6如图10过448C的顶点C任作一直线与边AB及中线AO分别交于点尸和E.过点M-(1)假设Sef:SmjiMDEF=2:3,求4E:ED;MC比例的根本性质得到两线段(2)求证:AEFB=2AFED6说明:由平行线推出两个三角形相似,再由相似三角形的面积比等于相似比的平方的比.注意平截比定理的应用.例7己知如图11在正方形48CQ的边长为1,尸是8边的中点,Q在线段相似?AFAMBD7说明:两个三角形相似,必须注意其顶点的对应关系.然后再确定顶点P所在确立置、逻T放性母型,有多个位置,应注意计算,严防漏解.例8己知如图12在梯形ASC。中,ADBC,ZA=9Oo,46=7,Ao
14、=2,BC=3.试彳E边48上确定,,犬的位置,使得以P、4、O为顶点的三角形与以P、B、C为顶点的三角形相似./8说明:两个三角形相似,必须注意其顶点的对应关系.然后再确定顶点P所在的位轮应注意计算,严防漏解.,例11.如图,ZXABC中,AB=AC,AD是BC边上的中线,CFBA,BF交AD于P点,交A(设点求证:BP2=PEPFe211分析:因为BP、PE、PF三条线段共线,找不到两个三角形,所以必须考虑等线段代换等其他方痣因为鼠&C,D是BC中点,由等腰三角形的性质知AD是BC的垂直平分线,如果我们连结PC,由线段垂直平分线向性质知礴C,OJlp只需证明aPECSPCF,问题就能解决了。图12例12.如图,:在AABC中,NBAC=900,ADBC,E是AC的中点,ED交AB的延长线于F。ABDF求证:ACaAFo12分析:比例式左边AB,AC在AABC中,右边DF、AF在AADF中,这两个三角形不相似,因此此题需经过中间比进行代换。通过证明两套三角形分别相似证得结论。八、确定证明的切入点。几何证明题的证明方法主要有三个方面。第一,从入手,通过推理论证,得出“求证”;第二,从“求证”入手,通过分析,不断寻求“证据”的支撑,一直追溯回到“”;第三,从“”及“求证”两方面入手,通过分析找到中间“桥梁”,使之成为清晰的思维过程。