Python多进程并行编程实践:以multiprocessing模块为例.docx

上传人:p** 文档编号:1060323 上传时间:2024-06-29 格式:DOCX 页数:7 大小:14.61KB
下载 相关 举报
Python多进程并行编程实践:以multiprocessing模块为例.docx_第1页
第1页 / 共7页
Python多进程并行编程实践:以multiprocessing模块为例.docx_第2页
第2页 / 共7页
Python多进程并行编程实践:以multiprocessing模块为例.docx_第3页
第3页 / 共7页
Python多进程并行编程实践:以multiprocessing模块为例.docx_第4页
第4页 / 共7页
Python多进程并行编程实践:以multiprocessing模块为例.docx_第5页
第5页 / 共7页
Python多进程并行编程实践:以multiprocessing模块为例.docx_第6页
第6页 / 共7页
Python多进程并行编程实践:以multiprocessing模块为例.docx_第7页
第7页 / 共7页
亲,该文档总共7页,全部预览完了,如果喜欢就下载吧!
资源描述

《Python多进程并行编程实践:以multiprocessing模块为例.docx》由会员分享,可在线阅读,更多相关《Python多进程并行编程实践:以multiprocessing模块为例.docx(7页珍藏版)》请在第壹文秘上搜索。

1、Python多进程并行编程实践:以multiprocessing模块为例7Pytlab,Python中文社区专栏作者。主要从事科学计算与高性能计算领域的应用,主要语言为Python,C,C+o熟识数值算法(最优化方法,蒙特卡洛算法等)与并行化算法(MPIQPenMP等多线程以及多进程并行化)以及python优化方法,常常运用C+给Python写扩展。blog:/ipytlabgithub:sgithb/Pyt1.ab?一前言并行计算是运用并行计算机来削减单个计算问题所须要的时间,我们可以通过利用编程语言显式的说明计算中的不同部分如何再不同的处理器上同时执行来设计我们的并行程序,最终达到大幅度提

2、升程序效率的目的。众所周知.Python中的GI1.限制了Python多线程并行对多核CPU的利用,但是我们仍旧可以通过各种其他的方式来让Python真正利用多核资源,例如通过C/C+扩展来实现多线程/多进程,以及干脆利用Python的多进程模块multiprocessing来进行多进程编程。本文主要尝试仅仅通过Python内置的multiprocessing模块对自己的动力学计算程序来进行优化和效率提升,其中:-实现了单机利用多核资源来实现并行并进行加速对比-运用manager模块实现了简洁的多机的分布式计算本文并不是对Python的multiprocessing模块的接口进行翻译介绍,须要

3、熟识multiProCeSSing的童鞋可以参考官方文档sdocs.pytho.org2librarymultiprocessing.htmlo正文最近想用自己的微观动力学程序进行一系列的求解并将结果绘制成二维Map图进行可视化,这样就须要对二维图上的多个点进行计算并将结果收集起来并进行绘制,由于每个点都须要进行一次ODE积分以及牛顿法求解方程组,因此要串行地绘制整张图可能会遇到极低的效率问题尤其是对参数进行测试的时候,每画一张图都须要等很久的时间。其中绘制的二维图中每个点都是独立计算的,于是很自然而然的想到了进行并行化处理。串行的原始版本由于脚本比较长,而且实现均为自己的程序,脚本的大致结构

4、如下,本质是一个二重循环,循环的变量分别为反应物气体(02和C0)的分压的值:整体过程就这么简洁,我须要做的就是运用multiprocessing的接口来对这个二重循环进行并行化。运用单核串行绘制100个点所须要的时间如下,总共花了240.76秒:二维m叩图绘制的效果如下:进行多进程并行处理multiprocessing模块multiprocessing模块供应了类似threading模块的接口,并对进程的各种操作进行了良好的封装,供应了各种进程间通信的接口例如Pipe,Queue等等,可以帮助我们实现进程间的通信,同步等操作。运用ProCeSS类来动态创建进程实现并行multiprocess

5、ing模块供应了Process能让我们通过创建进程对象并执行该进程对象的start方法来创建一个真正的进程来执行任务,该接口类似threading模块中的线程类Thread.但是当被操作对象数目不大的时候可以运用ProCeSS动态生成多个进程,但是假如须要的进程数一旦许多的时候,手动限制进程的数量以及处理不同进程返回值会变得异样的繁琐,因此这个时候我们须要运用进程池来简化操作。运用进程池来管理进程multiprocessing模块供应了一个进程池Pool类,负责创建进程池对象,并供应了一些方法来讲运算任务Offload到不同的子进程中执行,并很便利的获得返回值。例如我们现在要进行的循环并行便很

6、简洁的将其实现。对于这里的单指令多数据流的并行,我们可以干脆运用PoOI.m叩()来将函数映射到参数列表中。POOim叩其实是map函数的并行版本,此函数将会堵塞直到全部进程全部结束,而且此函数返回的结果依次仍旧不变。首先,我先把针对每对分压数据的处理过程封装成一个函数,这样可以将函数对象传递给子进程执行。运用两个核心进行计算,计算时间从240.76s降到了148.61秒,加速比为1.62对不同核心的加速效果进行测试为了查看运用不同核心数对程序效率的改善,我对不同的核心数和加速比进行了测试绘图,效果如下运行核心数与程序运行时间:运行核心数与加速比:可见,由于我外层循环只循环了10次因此运用的核

7、心数超过10以后核心数的增加并不能对程序进行加速,也就是多余的核心都奢侈掉了。运用manager实现简洁的分布式计算前面运用了multiprocessing包供应的接口我们运用了再一台机器上进行多核心计算的并行处理,但是multiprocessing的用处还有更多,通过multiprocessing.managers模块,我们可以实现简洁的多机分布式并行计算,将计算任务分布到不同的计算机中运行。ManagerS供应了另外的多进程通信工具,他供应了在多台计算机之间共享数据的接口和数据对象,这些数据对象全部都是通过代理类实现的,比如1.istProxy和DiCtProXy等等,他们都实现了与原生l

8、ist和diet相同的接口,但是他们可以通过网络在不同计算机中的进程中进行共享。关于managers模块的接口的具体运用可以参考官方文档:sdocs.python.org2librarymultiprocessig.htmlmanagers好了现在我们起先尝试将绘图程序改造成可以在多台计算机中分布式并行的程序。改造的主要思想是:1 .运用一台计算机作为服务端(SerVer),此台计算机通过一个Manager对象来管理共享对象,任务安排以及结果的接收,并再收集结果以后进行后处理(绘制二维map图)。2 .其他多台计算机可以作为客户端来接收SerVe的数据进行计算,并将结果传到共享数据中,让Ser

9、Ver可以收集。同时再client端可以同时进行上文所实现的多进程并行来充分利用计算机的多核优势。大致可总结为下图:服务进程首先服务端须要一个manager对象来管理共享对象BaseManagecregister是一个类方法,它可以将某种类型或者可调用的对象绑定到manager对象并共享到网络中,使得其他在网络中的计算机能够获得相应的对象。例如,JobMaager.register(,getjobid-queue,1CaIIabIe=Iambda:jobid_queue)我就将一个返回任务队列的函数对象同manager对象绑定并共享到网络中,这样在网络中的进程就可以通过自己的manager对象

10、的getjobid.queue方法得到相同的队列,这样便实现了数据的共享创建manager对象的时候须要两个参数,address,便是manager所在的ip以及用于监听与服务端连接的端口号,例如我假如是在内网中的192.168Ql地址的5000端口进行监听,那么此参数可以是(192.16901.5000)authkey,顾名思义,就是一个认证码,用于验证客户端时候可以连接到服务端,此参数必需是一个字符串对象.进行任务安排上面我们将一个任务队列绑定到了manager对象中,现在我须要将队列进行填充,这样才能将任务发放到不同的客户端来进行并行执行。这里所谓的任务其实就是相应参数在list中的in

11、dex值,这样不同计算机中得到的结果可以根据相应的index将结果填入到结果列表中,这样服务端就能在共享的网络中收集各个计算机计算的结果。启动服务端进行监听任务进程服务进程负责进行简洁的任务安排和调度,任务进程则只负责获得任务并进行计算处理。在任务进程(客户端)中基本代码与我们上面单机中的多核运行的脚本基本相同(因为都是同一个函数处理不同的数据),但是我们也须要为客户端创建一个manager来进行任务的获得和返回。在客户端我们仍旧可以多进程利用多核资源来加速计算。下面我将在3台在同一局域网中的电脑来进行简洁的分布式计算测试,- 其中一台是试验室器群中的管理节点,内网ip为10.10.10,24

12、5- 另一台为集群中的一个节点,共有12个核心- 最终一台为自己的本本,4个核心先在服务端运行服务脚本进行任务安排和监听:Pythc)nserver.py在两个客户端运行任务脚原来获得任务队列中的任务并执行pythonworker.py当任务队列为空且任务完成时,任务进程终止;当结果列表中的结果收集完毕时,服务进程也会终止。执行结果如下图:上面的panel为服务端监听,左下为自己的笔记本运行结果,右下panel为集群中的其中一个节点。可见运行时间为56.86s,无奈,是我的本子脱了后腿(_-!)总结本文通过python内置模块multiprocessing实现了单机内多核并行以及简洁的多台计算

13、机的分布式并行计算,multiprocessing为我们供应了封装良好并且友好的接口来使我们的PythOn程序更方面利用多核资源加速自己的计算程序,希望能对运用PythOn实现并行话的童鞋有所帮助。参考sdocs.python.org2librarymultiprocessig.html分布式进程-廖雪峰的官方网站ARTIC1.ES近期热门文章0生成器:关于生成器的那些事儿。爬虫代理:如何构建爬虫代理服务。地理编码:怎样用Python实现地理编码OnginX日志:运用Python分析nginx日志O淘宝女郎:一个批量抓取淘女郎写真图片的爬虫。IP代理池:突破反爬虫的利器开源IP代理池。布隆去重:基于Redis的Bloomfilter去重(附代码)O内建函数Python中内建函数的用法C)QQ空间爬虫:QQ空间爬虫最新共享,一天400万条数据。对象:PythOn教你找到最心仪对象0线性回来:Python机器学习算法入门之梯度下降法实现线性回来。匿名代理池:进击的爬虫:用Python搭建匿名代理池0放射导弹:Python放射导弹的正确姿态

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > IT计算机 > Python

copyright@ 2008-2023 1wenmi网站版权所有

经营许可证编号:宁ICP备2022001189号-1

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。第壹文秘仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知第壹文秘网,我们立即给予删除!