《5课题:解直角三角形.docx》由会员分享,可在线阅读,更多相关《5课题:解直角三角形.docx(2页珍藏版)》请在第壹文秘上搜索。
1、课题:解直痢三角形【学习目标】I.理解解直第三先形的定义,能通过已知条件正确选用关系式侪直角三先形.2.娴熟应用.勾股定理,直角三角形两锐角关系,边角关系解直角三角形,培肓分析实力和计算实力.【学习重点】学会运用巳如条件解直角三比形.【学习难点】.依抠条件选择适当的方法解直用三角形.精*导人生成词我旧知回顾:1 .直痢.角形三边之间有什么关系?答:勾股定理:f+b?=/.2 .直角三角形两锐角之间有何关系?答:互余:ZA+ZB=90.3 .直角:角形边与角之间有何关系?答:锐角三角函数siA=g1.a=6则h=aZB=45i.ZA=45:(2)若a=3,b=3.则NA=,ZB=30.c=23.
2、仿例I:(连云港中学)在MZiABC中,.NC=90,BC=5,AC=15,则NA的度数为(D.90B.60C.45D.30,3-4A4-33-5C4-5D仿例2:如图,在四边形ABCD中,E.F分别是AB,AD的中点,若EF=2,BC=5,CD=3,则“,”C等f(R)仿例3:在用AABC中,NC=90.BC11,AC-43.解这个直角三角形.解:VtoHA=3.A=60,ZB=30.AB=2AC=83.学问模块二已知一边和一锐角解直角三角形阅读教材P16PI7,完成下面的内容:楚例2:如图,在用AABC中,ZC=90,.AB=6,cavB=.则BC的长为().AR、尺r811n23八4U.
3、2,J5C.3/*-IR仿例1.:如图”在AABC中,ZC=90p.B=60,D是AC上一点,DElAB于点E,IICD=2,DE=1.则BC的长为(B).2及芈C.23D.43仿例,:如图,在AABC中sB3-5AB12C.14D.21仿,例3:等边三角形的高为2,则它的边长是(C)A.4,75C.3D.2沟通展示士氏身如1 .将阅读教材时“生成的何越”和通过“自学互研”得出的结论展示在各小组的小黑板匕并将疑难问遨也板演到怨板上,再一次通过小组间就上述疑难向超相互择疑.2 .各小组由组长统一安排展示任务,由代表将“问题和结论”展示在黑板上,通过沟通”生成新知二学问模块一已知两边解直角三角形学问模块二已知一边和一税角解直角三角形松濯反卷i,11见光盘课,后反图看玛扑妹1 .收获:2 .存在困惑:.