8个无敌模型—全搞定空间几何的外接球和内切球问题.docx

上传人:p** 文档编号:1077227 上传时间:2024-06-29 格式:DOCX 页数:13 大小:312.78KB
下载 相关 举报
8个无敌模型—全搞定空间几何的外接球和内切球问题.docx_第1页
第1页 / 共13页
8个无敌模型—全搞定空间几何的外接球和内切球问题.docx_第2页
第2页 / 共13页
8个无敌模型—全搞定空间几何的外接球和内切球问题.docx_第3页
第3页 / 共13页
8个无敌模型—全搞定空间几何的外接球和内切球问题.docx_第4页
第4页 / 共13页
8个无敌模型—全搞定空间几何的外接球和内切球问题.docx_第5页
第5页 / 共13页
8个无敌模型—全搞定空间几何的外接球和内切球问题.docx_第6页
第6页 / 共13页
8个无敌模型—全搞定空间几何的外接球和内切球问题.docx_第7页
第7页 / 共13页
8个无敌模型—全搞定空间几何的外接球和内切球问题.docx_第8页
第8页 / 共13页
8个无敌模型—全搞定空间几何的外接球和内切球问题.docx_第9页
第9页 / 共13页
8个无敌模型—全搞定空间几何的外接球和内切球问题.docx_第10页
第10页 / 共13页
亲,该文档总共13页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

《8个无敌模型—全搞定空间几何的外接球和内切球问题.docx》由会员分享,可在线阅读,更多相关《8个无敌模型—全搞定空间几何的外接球和内切球问题.docx(13页珍藏版)》请在第壹文秘上搜索。

1、八个模型搞定空间几何体的外接球与内切球1.1球与正方体如图1所示,正方体/VJCQ-AAGR,设正方体的校长为E,E”,G为梭的中点,。为球的球心,常见组合方式有三类一是球为正方体的内切球.截面图为正方形E/P和其内切困,则0J=r=3;二是与正方体各擅相切的球,低面图为正方形E/PH和其外接回.则IGa=/?=*“;三是球为正方体的外接球,载面图为长方形ACIIG和其外接圆,则IAa=*长方体各项点可在一个球面上,故长方体存在外切球.但是不一定存在内切球.设长方体的极长为b.c.其体对角线为/.当球为长方体的外接球时.截面图为长方体的对角面和其外接圆.和正方体的外接球的道理是一样的.故球的半

2、径R=I=立+:+.1.3球与正梭柱球与一般的正梭柱的组合体,常以外接形态居多下面以正三梭柱为例,介绍本类短目的解法构造直角三角形法.设正三棱柱八3。-346的高为九底面边长为”.如图2所示,。和。分别为上下底面的中心.根据几何体的特点.球心必落在高。的中点。,。=14。=凡八。=乎”,倡助直向三角形AOO的勾股定理.可求/?=他尸+(gG1.2.1球与正四面体正四面体作为一个规刖的几何体.它既存在外接球,也存在内切球.并且两心合一,利用这点可顺利掰决球的半径与正四面体的棱长的关系如图4设正四面体S-/ViC的棱长为。,内切球半径为匕外接第1页共12页球的半径为R.取AB的中点为。,E为S在底

3、面的射影.连接CO3DSE为正四面体的高.在截面三角则有形SQC.作一个与边5Q,和力C相切,Sl心在高SE上的圆,即为内切球的於面因为正四面体本身的对称性可知,外接球和内切球的球6同为。此时,CO=OS=R.0E=JSER+r=R,霜_/=.肝=!解得:R=叵,r=&a.V33412同时我们可以发现,球心。为正四面体高的四等分点.图4类型一、墙角模型(三条侧梗互相垂直的三棱雄组合问题,基本方法是补形法,即把三棱错补形成正方体或者长方体)例1(1)已知各顶点都在同一球面上的正四棱柱的高为4,体积为16,则这个球的表面积是(C)A.16B.2()C.2411D.3211(2)若三棱锥的三个仰面两

4、垂直,且侧核长均为6.则其外接球的表面积是9解:(1)V=A=16,=2.S=24,选C;(2)4/?:=3+3+3=9.S=4成二=91(3)在正三棱惟5-A3C中.W、N分别是棱5C、8C的中点.且AM_1.AfN,若恻授S4=2、6,则正三梭锥S-AZJC外接球的表面积是.36;T斛:引理正三校11的财检互蜜,证明如下如图(3)-1,取AB.8C的中点O.E,连接A8.AEC。交于连接S”.则H是底面正三角形ABC的中心.SHJ_平面A3C.SH1.AH,.AC=BC1Af=8Z.8_1.A3.,43_1.平面SCD,AHSC.同理:BC1.SA.ACSB1即正三棱钳的对蛾互垂直.本题图

5、如图(3)2.AM1MN.SBHMN.AM1SB.AClSfi.a581平面SAC.;.SB上SA,SBSC.SBSA.BCSA.SA_1.平面SRC.:.SA1SC.故三棱ItS-ABC的三棱条侧被两两互相垂直.(2)i=(23)j+(2J5)2+(23)i=36,即=36.正三核镣S-A3C外接球的表面积是36加(4)如果三棱铤的三个侧面两两垂直,它们的面积分别为6、4、3,那么它的外接球的表面积是斛:(4)三条IH棱两两垂直,设三条侧蝮长分别为b.c(a,b.ceR),则就=12be=8,(ibc=24,:.a=3,b=4,c=2.ac=()(2/?):=+b2+c2=29.5=4=29

6、.(5)已知某几何体的三视图如图所示,三视图是腰长为1的等腰包角三角形和边长为I的正方形.则该几何体外接球的体积为(2R)=a2+h-+ci=3./?=-,R=昱p424=一成3类型二、瓯面模型(一条直线雳直于一个平面)1翅设;如图5,PAJ平面A8C解题步骤:第一步:将/VlAC画在小圆面上,A为小圆直径的一个端点,作小国的直径40,连接PO.则P。必过球心。;第二步:。为A8C的外心,所以OaJ.平面A8C豫出小EQ的半径。P=r(三角形的外接四直径算法:利用正弦定理.得=-=2r),OO1=-PA;sinAsinBsinC2第三步:利用勾股定理求三棱倍的外接球半径:(2/?-=PV+(2

7、r)2O2=7球的表面积为(D)AlbrB.711C.-11D.-113解析:(4)在4BC中,BC=AC1+-2BBCcosl20=7,Rr例7=f.A8C的外接球直径为2r=丁与一二SinNBAC+(2r)2;R=r(1)在四面体S-ABC中,SAl5FffifAfiC./MC=120;SA=AC=2,八G=I,则该四面体的外接+OOOR=M+Oq2(2R)2=(2r)2+5A2=(2较设:如图6,7.8.P的射影是MBC的外心。三棱IttP-ABC的三条恻蝮相等。三棱锥。-A8C的底面AABC在圆锥的底上,顶点P点也是圆钳的顶点解题步骤第一步:确定球心。的位置,取A3C的外、。则RO,Q

8、三点共线;第二步:先算出小圜。的半径八。=1.再算出援铤的高Pa=(也是脸钺的高)第三步:勾股定理:o=/+/?2=/+O1O2OAC=2,R二OQ?3如图9T,平面PAC,平面A8C.S.ABIBC(即AC为小四的直径).且PA1.AC.则利用勾股定理求三极锥的外接球半径:1(2R)2=P+(2r)*IR=42+(2)2;2Ri=r2+(X)i2oR=yjr2+OO例3(D正四蝮钳的顶点都在同一球面上,若该梗镀的高为1.底面边长为2、行,则该球的表面积为,(2)正四极锥5-A3C。的底面边长和各级梭长都为、行,各顶点都在同一个球面上,则此球的体积为一解:(I)由正弦定理或找球心都可得2R=7

9、.S=4Mf=49.(2)方法一:找球心的位置,易知,=1,%=1.a=1.故球心在正方形的中心ABCD处./?=1,V=方法二:大圆是轴数面所的外接圆,即大圆是5AC的外接圆,此处特殊,m5AC的斜边是球半径.2R=2,R=1.V=3(3)在三棱椎P-ABC中.PA=PA=PC=5,恻棱尸A与底面ABC所成的角为60二则该三接键外接球的体积为(A.*B.C.11D.43解:选D,圆钺A.3.C在以r=、-的圆上,R=I(4)已知三棱惟S-ABC的所有顶点都在球。的求面上,AABC是边长为1的正三角形,SC为球。的直径,且SC=2,则此棱钳的体积为()A类型四、汉里模型(直梭柱的外接球、HI柱的外接球)=2.AD=BC=3.AC=8)=4,则三棱锥人一88外接球的表29面积为0-112翻析:如图12,设补形为长方体.三个长度为三对面的对角线长,设长宽各分别为b.c,则+=9.b:+c2=4,c2+2=16.2(/+C)=9+4+16=29,2(*+/)=9+4+16=29.2,29田29t.29a+b+r=.4R-=tS=11222(4)如图所示三棱

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高等教育 > 大学课件

copyright@ 2008-2023 1wenmi网站版权所有

经营许可证编号:宁ICP备2022001189号-1

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。第壹文秘仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知第壹文秘网,我们立即给予删除!