吴锦霞《三角形内角和》说课.docx

上传人:p** 文档编号:1182077 上传时间:2024-09-20 格式:DOCX 页数:6 大小:11.25KB
下载 相关 举报
吴锦霞《三角形内角和》说课.docx_第1页
第1页 / 共6页
吴锦霞《三角形内角和》说课.docx_第2页
第2页 / 共6页
吴锦霞《三角形内角和》说课.docx_第3页
第3页 / 共6页
吴锦霞《三角形内角和》说课.docx_第4页
第4页 / 共6页
吴锦霞《三角形内角和》说课.docx_第5页
第5页 / 共6页
吴锦霞《三角形内角和》说课.docx_第6页
第6页 / 共6页
亲,该文档总共6页,全部预览完了,如果喜欢就下载吧!
资源描述

《吴锦霞《三角形内角和》说课.docx》由会员分享,可在线阅读,更多相关《吴锦霞《三角形内角和》说课.docx(6页珍藏版)》请在第壹文秘上搜索。

1、北师大版四年级下册三角形的内角和说课稿吴锦度一、说教材“三角形的内角和是北师大版四年级下册第二单元的内容。“三角形的内角和是三角形的一个重要性侦,学好它有助于学生理解三角形内角之间的关系,也是进一步学习几何的基础。二、说学情本节课是在学生学过角的度量、三角形的特征和分类等知识的基础上进行教学的,学生已经具备一定的关于三角形的认识的直接经验,也已具备了一些相应的三角形知识和技能,这为感受、理解、抽象“三角形的内角和的规律,打下了坚实的基础。三、教学目标知识与技能:通过测量:、撕拼、折叠等方法,探索和发现三角形三个内角的和等于180。知道三角形两个角的度数,能求出第三个角的度数。能应用三角形内角和

2、的性质解决一些简单的问题。过程与方法:发展学生动手操作、观察比较和抽象概括的能力。情感、态度与价值观:体验数学活动的探索乐趣,体会研究数学问题的思想方法。教学重点:学生经历探究三角形内角和的全过程”并归纳概括W角形内角和等于180。教学难点:三角形内角和的探索与骗证,对不同探究方法的指导和学生对规律的灵活应用。四、说教法、学法整个教学将体现以人为本,先放后扶的教学策略。放,不是漫无目的的放,而是为学生提供足够的探究规律的材料和时间,放手让学生自主学习,合作探究:扶,则是根据学生的不同探究方法和出现的错误,给予恰当指导,引导学生归纳概括出规律。课程标准明确指出:“要结合有关内容的教学,引导学生进

3、行观察、操作、猜想,培养学生初步的思维能力四年级学生经过第一学段以及本单元的学习,已经掌握了三角形的分类,比较熟悉平角等有关知识;具备了初步的动手操作、主动探究的能力,他们正处于由形象思维向抽象思维过渡的阶段。因此,本节课,我将重点引导学生从“猜测一一崎证”展开学习活动,让学生感受这种俄要的数学思维方式。在教学中,学生通过测量、拼折、验证等方式确定三角形内角的度数和。这样,既培养了观察能力和归纳概括能力,又体现了动手实践、合作交流,自主探索的学习方式,同时也培养了探索能力和创新精神。五、说教学过程基于以上分析,我以猜测、验证、结论和应用四个活动环节为主线,让学生通过自主探究学习进行数学的思考过

4、程,积累数学活动经验。第一,猜测。通过出示一个角形,让学生说知道三角形的知识来引出三角形的内角的概念,让学生自由猜测,三角形内角和是多少?引出课题,以疑激思。第二,动手操作,探究新知动手实践,自主探究,是学生学习数学的重要方式,新课程的一个府要理念就是提倡学生“做数学用亲身体验的方式来经历数学,探究数学,这要求老师首先为学生提供充分的研究材料,以及充裕的时间,保证学生能真正地试验,操作和探索。这一环节我设计为以下三步:1、操作感知。组织学生通过算一算初步感知三角形的内角和。根据学生特点,为了节约学生上课的时间,作为预习作业,我提前让学生在家里自制钝角、锐角、直角三角形,并测量出每个角的度数,写

5、在三角形对应的角上,也填在书上的表格里。这时直接让学生计算,学生汇报计算结果,不同的学生可能会有不同的结果,有可能大于180。或小于180甚至等于180%只要相对合理(允许一点误差)都给与肯定。这时可引导学生得出结论(强调在排除测量误差的前提下):三角形的内角和是180度。在这一过程中,学生有困惑,有疑问,而正是这些困惑激发了学生更强的探究欲望,正是这些疑问,使得合作”成为学生的内在需要。2、小组合作。针对探究过程中不同思维能力的学生,要做到因材施教。对广得出结论的学生要鼓励他们思考新的方法,对于无法下手的学生,要启发他们知道三角形的内角和,我们可以把角合起来看是多少?能用什么方法将三个角合起

6、来。在探究学习中,老师只是起一个引导者的作用,引导学生不断地深入探究,尽可能用多种合理的方法,验证结论。3、交流反馈,得出结论。学生完成探究活动之后,在有亲身体验的基础上,我将选择不同方法的代表,在展示平台上展示自己的探究过程,并说说自己是怎样想的。我关注的不是学生最后论证的结果,而是学生思维的过程。学生可能通过:拼一拼、折一折、画一画的方法,验证得出三角形的内角和是180度,并通过观察对比各组所用的三角形,是不同类型的而且大小不同的,发现这一规律是具有普遍性的,对于任意三角形都是适用。在学生探究之后,我用课件重新演示了3种方法,让学生有一个系统的知识体系。第三是灵活应用,拓展延伸。揭示规律之

7、后,学生要掌握知识,形成技能技巧,就要通过解答实际问题的练习来巩固内化。根据学生能力的不同,我将练习分为以下3个层次。1、基础练习。要求学生利用三角形内角和是180度”在三角形内已知两个角,求第三个角。由于学生空间思维能力的局限,我将先出示有具体图形的题目,再出示文字叙述题。在这之间指导学生注意-题多解。2、提高练习。如已知一个直角三角形的一个角的度数,求另一个角的度数;已知一个等腰三角形的顶角或底角的度数,求底角或顶角的度数。3、拓展练习。针对不同思维能力的学生,我设计的思考题是要求学生应用“三角形内角和是180。”的规律,求多边形的内角和。我的目的不仅仅是为了让学生去求解多边形的内角和,更重要的是为了让学生灵活应用知识点,培养学生的空间思维能力。这样安排可以兼顾不同能力的学生,在保证基本教学要求的同时,尽量满足学生的学习需要,启发学生的思维活动。本节课通过这样的设计,学生全身心投入到数学探究互动中去,学生不仅学到科学探究的方法,而体验到探索的甘苦,领略成功的喜悦,学生在探索中学习,在探索中发现,在探索中成长,最终实现可持续性发展。板书:三角形的内角和探索:量,拼,折推理:特殊般发现:三角形内角和等于180。推广:多边形内角和(n-2)X180

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 中学教育 > 中学学案

copyright@ 2008-2023 1wenmi网站版权所有

经营许可证编号:宁ICP备2022001189号-1

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。第壹文秘仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知第壹文秘网,我们立即给予删除!