《金融大数据银行项目解决方案说明书.docx》由会员分享,可在线阅读,更多相关《金融大数据银行项目解决方案说明书.docx(10页珍藏版)》请在第壹文秘上搜索。
1、金融大数据银行项目解决方案说明书XX科技股份有限公司编制目录一、项目存在问题及需解决问题31. 存在问题32. 需解决问题3二、解决方案41 .解决方案架构42 .关键技术5(1) Hadoop5(2) SpringMVC6(3) MyBatis6(4) Echarts6(5) MySQ1.6(6) Hive7(7) HBASE7(8) Zookeeper8(9) F1.ume8三、开发范围81 .数据生产82 .数据采集/消费83 .数据分析104 .数据展示10一、项目存在问题及需解决问题1 .存在问题交易数据问题数据延续问题数据稳定问题2 .需解决问题交易数据金融行业多是用户存款,消费,
2、投资等金融账户数据,数据本身包含用户消费能力,价值极高数据延续金融行业保存有客户长期的数据,对客户长时间的行为分析有巨大价值数据稳定客户收入,消费,投资行为比较有规律,时间及金额较为稳定二、解决方案1 .解决方案架构系统开发平台使用Hadoop大数据开发平台。Hadoop是一个高度可扩展的存储平台,可以存储和分发横跨数百个并行操作的廉价的服务器数据集群。能扩展到处理大量的数据,能提供成百上千TB的数据节点上运行的应用程序。HadooP能够有效的在几分钟内知理TB级的数据。相比关系型数据库管理系统更具有优势。它适用于任何规模的非结构化数据持续增长的企业,将帮助用户持续提高用户体脸。系统采用面向对
3、象的软件设计方法,把整个系统看作是多个离散对象的组合。系统设计时,首先把业务流程分解成功能模块及其业务实体对象,然后根据业务流程分析对于这些业务实体对象的操作方法,形成业务处理对象,最后把各个功能模块关联起来,形成系统。软件设计是一个将需求转变为软件的过程,系统通过逐步求精使得设计陈述逐渐接近于源代码。系统程序采用MVC的设计思想,将展现逻辑、控制逻辑、业务处理逻辑分离。系统采用参数化的设计思想,定义和管理系统的实体及配置,调整实体以适应外部变化。系统采用J2EE技术保证程序逻辑实现的平台无关性,并便于安装部署。系统采用AJAX技术,提高客户操作的交互性,保证实际使用的易用性。系统采用echa
4、rts可视化框架实现数据展示。2 .关键技术(1) HadpHadoop是一个由Apache基金会所开发的分布式系统基础架构。用户可以在不了解分布式底层细节的情况下,开发分布式程序。充分利用集群的威力进行高速运算和存储。(2) SpringMVCSpringMVC:展于SpringIrameWork的后续产品,已经融合在SpringWebF1.oW里面。Spring框架提供了构建Web应用程序的全功能MVC模块。(3) MyBatisMYBatis:是支持普通SQ1.查询,存储过程和高级映射的优秀持久层框架。MyBatiS消除了几乎所有的JDBC代码和参数的手工设置以及结果集的检索。MyBat
5、is使用简单的XM1.或注解用于配置和原始映射,将接口和Java的POJOS(P1.ainO1.dJavaObjects,普通的JaVa对象)映射成数据库中的记录。(4) EchartsECharts是一款基于Javascript的数据可视化图表库,提供直观,生动,可交互,可个性化定制的数据可视化图表。(5) MySQ1.MySQ1.是一个关系型数据库管理系统,由瑞典MySQ1.AB公司开发,属于OraCIe旗下产品。MySQ1.是最流行的关系型数据库管理系统之一,在WEB应用方面,MySQ1.是最好的RDBMS(Re1.ationa1.DatabaseManagenientSystem,关系
6、数据库管理系统)应用软件之一。MySQ1.是一种关系型数据库管理系统,关系数据库将数据保存在不同的表中,而不是将所有数据放在一个大仓库内,这样就增加了速度并提高了灵活性。MySQ1.所使用的SQ1.语言是用于访问数据库的最常用标准化语言。MySQ1.软件采用了双授权政策,分为社区版和商业版,由于其体积小、速度快、总体拥有成本低,尤其是开放源码这一特点,一般中小型网站的开发都选择MySQ1.作为网站数据库。(6) Hivehive是基于Hadoop构建的一套数据仓库分析系统,它提供了丰富的SQ1.查询方式来分析存储在Hadoop分布式文件系统中的数据:可以将结构化的数据文件映射为一张数据库表,并
7、提供完整的SQ1.查询功能;可以将SQ1.语句转换为MapReduce任务运行,通过自己的SQ1.查询分析需要的内容,这套SQ1.简称HiveSQ1.,使不熟悉111.apreduce的用户可以很方便地利用SQ1.语言查询、汇总和分析数据。而mapredce开发人员可以把自己写的mapper和reducer作为插件来支持hive做更复杂的数据分析。它与关系型数据库的SQ1.略有不同,但支持了绝大多数的语句如DD1.、DM1.以及常见的聚合函数、连接查询、条件查询。它还提供了一系列的:具进行数据提取转化加载,用来存储、查询和分析存储在HadoOP中的大规模数据集,并支持UDF(User-Defi
8、nedFunction),UDF(User-DefnesAggregateFunction)和UDTF(USer-DefinedTab1.e-GeneratingFunction),也可以实现对map和reduce函数的定制,为数据操作提供了良好的伸缩性和可扩展性。(7) HBASEHBase-HadoopDatabase,是一个高可靠性、高性能、面向列、可伸缩的分布式存储系统,利用HBase技术可在廉价PCSerVer上搭建起大规模结构化存储集群。(8) ZookeeperZooKeeper是一个分布式的,开放源码的分布式应用程序协调服务,是GOOgIe的ChUbby一个开源的实现,是Had
9、oOP和HbaSe的重要组件。它是一个为分布式应用提供一致性服务的软件,提供的功能包括:配置维护、域名服务、分布式同步、组服务等。(9) F1.umeF1.ume是C1.oudera提供的一个高可用的,高可靠的,分布式的海量日志采集、聚合和传输的系统,F1.ume支持在日志系统中定制各类数据发送方,用于收集数据;同时,F1.ume提供对数据进行简单处理,并写到各种数据接受方(可定制)的能力。三、开发范围1 .数据生产对于该模块的业务,即数据生产过程,一般并不会让你来进行操作,数据生产是一套完整且严密的体系,这样可以保证数据的安全性。但是如果涉及到项目的一体化方案的设计(数据的产生、存储、分析、
10、展示),则必须清楚每一个环节是如何处理的,包括其中每个环境可能隐藏的问题;数据结构,数据内容可能出现的问题。2 .数据采集/消费数据采集模块(消费),在企业中你要清楚流式数据采集框架f1.ume和kafka的定位是什么。我们在此需要将实时数据通过f1.ume采集到kafka然后供给给hbase消费。f1.ume:CIOUdera公司研发适合下游数据消费者不多的情况;适合数据安全性要求不高的操作;适合与Hadoop生态圈对接的操作。kafka:Iinkedin公司研发适合数据下游消费众多的情况:适合数据安全性要求较高的操作(支持rep1.ication);因此我们常用的一种模型是:线上数据一f1.umekafkaf1.ume(根据情景增删该流程)HDFS线上数据一f1.umekafka-Sparkstreaming实时流式处理消费存储模块流程图:3 .数据分析我们的数据已经完整的采集到了HBaSe集群中,这次我们需要对采集到的数据进行分析,统计出我们想要的结果。注意,在分析的过程中,我们不一定会采取一个业务指标对应一个mapreduce-job的方式,如果情景允许,我们会采取一个mapreduce分析多个业务指标的方式来进行任务。分析模块流程图:4 .数据展示数据展示模块流程图: