燃料电池电堆壳体防爆设计.docx

上传人:p** 文档编号:1328297 上传时间:2025-03-04 格式:DOCX 页数:5 大小:9.03KB
下载 相关 举报
燃料电池电堆壳体防爆设计.docx_第1页
第1页 / 共5页
燃料电池电堆壳体防爆设计.docx_第2页
第2页 / 共5页
燃料电池电堆壳体防爆设计.docx_第3页
第3页 / 共5页
燃料电池电堆壳体防爆设计.docx_第4页
第4页 / 共5页
燃料电池电堆壳体防爆设计.docx_第5页
第5页 / 共5页
亲,该文档总共5页,全部预览完了,如果喜欢就下载吧!
资源描述

《燃料电池电堆壳体防爆设计.docx》由会员分享,可在线阅读,更多相关《燃料电池电堆壳体防爆设计.docx(5页珍藏版)》请在第壹文秘上搜索。

1、燃料电池电堆壳体防爆设计氢燃料电池并不能像动力电池一样储存电能,车辆在工作时需要依靠车载氢系统愉送氢气和空气中氧气在电堆内进行反应发电。由于氢气具有易燃易爆的特性,在相对密闭的电堆壳体内部若发生氢气泄漏并积聚,则会产生爆炸风险,因此电堆的防爆设计显得尤为重要。1、电堆氢气泄漏原因分析导致电堆氢气泄漏的原因大致分为5种,材料缺陷、疲劳失效、极端温度、寿命衰减、压力变化,如下表:导致电堆氢气泄漏的原因2、电堆壳体防爆设计分类根据上表中描述的导致电堆氢气泄漏的原因,除材料缺陷外,其他原因都与车辆的运行工况相关,因此在运行过程中,须采取必要措施避免或降低因泄漏导致的安全隐患。壳体的防爆设计是降低安全隐

2、患的途径之一,可分为主动式和被动式两种。电堆壳体防爆设计主动式即为在车辆运行过程中,通过对电堆壳体内部进行强制通风,配合氢浓度传感器监测电堆壳体内部氢气浓度,主动预防氨气泄漏,典型代表为N乍型。被动式以安全阀方案为例,即为在电堆中设置安全阀,当内部压力超过安全阈值时,安全阀会自动打开,释放气体,以降低爆炸风险。当发生碰撞或激烈震动时,缓冲材料可降低电堆的塌腰错位。典型代发为M车型。3、典型电堆壳体防爆设计N车型(主动式)N车型燃料电池电堆采用强制通风(负压)形式来防止堆内氢气积聚,当车辆启动后,利用空压机将电堆内部气体强制抽取至空气过滤器,使电堆壳体内部保持负压状态。若发生大量泄漏,安装于电堆

3、壳体之上的氨气浓度传感器会实时监测壳体内部浓度变化,VCU根据氢气浓度传感器监测到的结果进行判断,并向整车、燃料电池系统和车载储氢系统发送对应的指令,采取急停的措施,保障人员和车辆的安全。N车型电堆壳体防爆设计主要结构N车型强制通风管连接示意图车型强制通风路径实图M车型(被动式)M车型燃料电池电堆与DCDC上下集成,内部空间连通,共计有5处防爆设计,如下图所示,其中防水透气膜2处,位置分别为:c、e,爆破片3处,位置分别为:a、b、do在电堆氢气微量泄漏的情况通过防水透气膜可将泄漏的氨气排出,若氯气大量泄漏电堆与DCDC壳体内部压力升高,爆破片迅速破裂或脱落,从而形成泄放口并排出氢气。防水透气膜,是一种具有选择透过性的薄膜,可以在自身特性的条件下可以让一些小于防水透气膜孔径的气体透过、而不能让大于防水透气膜微孔孔径的其他物质比如水滴透过。爆破片装置,是指一种非重闭式超压泄放装置,由爆破片和夹持器组成。在一定温度下,爆破片因两侧压差达到极限值发生强度破坏或失稳,迅速破裂或脱落,从而形成泄放口并排出介质,避免容器发生超压变形或爆炸。M车型防爆设计4、总结相比之下,M车型的被动式方案成本更低,形式更为简单,但对电堆封装工艺、极板密封材料、压装力均匀性等设计提出更高的要求。被动式设计也体现出品牌对自一产品品质的自信。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 论文 > 自然科学论文

copyright@ 2008-2023 1wenmi网站版权所有

经营许可证编号:宁ICP备2022001189号-1

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。第壹文秘仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知第壹文秘网,我们立即给予删除!