《第三章习题答案.ppt》由会员分享,可在线阅读,更多相关《第三章习题答案.ppt(18页珍藏版)》请在第壹文秘上搜索。
1、3-1 一飞轮直径为一飞轮直径为0.30m,质量为,质量为5.00kg,边缘绕有绳子,现用力拉绳子的一端,边缘绕有绳子,现用力拉绳子的一端,使其由静止均匀地加速使其由静止均匀地加速 ,经,经 0.50 s 转速达转速达10rs。假定飞轮可看作实心圆柱体,求:。假定飞轮可看作实心圆柱体,求: (1)飞轮的角加速度及在这段时间内转过)飞轮的角加速度及在这段时间内转过的转数;的转数; (2)拉力及拉力所作的功;)拉力及拉力所作的功; (3)从拉动后经)从拉动后经 t =10s时飞轮的角速度及时飞轮的角速度及轮边缘上一点的速度和加速度。轮边缘上一点的速度和加速度。5.210-2 kg.m2 =1.26
2、102(0.5)2 = 5 21at2=q21N=q2= 2.5转250.15MRJ221=()2解:解:1)ta0根据题意可知根据题意可知201022, 05 . 00nt2/126405 . 020sradta=aFRJ=5.610-21.26102 0.1547N=qA=MFRq470.155=111J =aFMRJ=(2)Rv= 0.151.26103 =1.89102 m/s at=Ra= 0.151.26102an2=R= 0.15(1.26103)2 =2.38105 m/s2 =1.2610210=1.26103 1/sat=(3)=18.9m/s2法向加速度:切向加速度:部分
3、同学忽略了法向加速度部分同学忽略了法向加速度总加速度大小总加速度大小2522/1038. 2smaaant方向几乎和法向加速度相同方向几乎和法向加速度相同 3-3 如图所示,两物体如图所示,两物体1和和2的质量分别的质量分别为为m1与与m2,滑轮的转动惯量为,滑轮的转动惯量为J,半径为半径为 r 。 (1)如物体)如物体2与桌面间的摩擦系数为与桌面间的摩擦系数为,求系统的加速度求系统的加速度 a 及绳中的张力及绳中的张力 FT1 与与 FT2(设绳子与滑轮间无相对猾动);(设绳子与滑轮间无相对猾动); (2)如物体)如物体2与桌面间为光滑接触,求系与桌面间为光滑接触,求系统的加速度统的加速度
4、a 及绳及绳中的张力中的张力FT1 与与 FT2m22T1Tm1fm=Ngm2m=T1F=m a1gm1T2F=m a2fa =ar+=r2+m2mgm1m2J()r2+m1m2JT1F+=r2+m1mgm2m1J()r2+m1m2JT2FmNgfm2m2FT2FT1agm1FT1m10N=gm2aJ=T1F r T2F r r2+a=gm2mgm1m1m2J解得:解得:解:解:(1)FT2gm1r2+m1m2Ja=+=r2gm1m2J()r2+m1m2J1T=gm2m1r2+m1m2J2T(2)m= 03-5: 半径分别为半径分别为rA和和rB的圆盘,同轴得粘在一的圆盘,同轴得粘在一起,可以
5、绕通过盘心且垂直盘面的水平光滑起,可以绕通过盘心且垂直盘面的水平光滑固定轴转动,对轴的转动惯量为固定轴转动,对轴的转动惯量为J,两圆盘,两圆盘边缘都绕有轻绳,绳子下端分别挂有质量为边缘都绕有轻绳,绳子下端分别挂有质量为mA和和mB的物体的物体A和和B,如图所示。若物体,如图所示。若物体A以加速度以加速度aA上升,证明物体上升,证明物体B的质量的质量ABBAAAAABargrragrmJam22)(rArBA AB证明:AmAgFT1aABmBgFT2aBrArBFT1FT2根据受力分析可列出如下方程根据受力分析可列出如下方程AAATamgmF1aJrFrFATBT12aAAra BBTBamF
6、gm2aBBra ABBAAAAABargrragrmJam22)(3-7:一轴承光滑的定滑轮,质量m0=2kg,半径为R=0.1m,一根不能伸长的轻绳,一端固定在定滑轮上,另一端系有一质量m=5kg的物体,如图所示。已知定滑轮的转动惯量为J=m0R2/2.其初角速度为w0=10rad/s,方向垂直纸面向里。求1)定滑轮的角加速度;2)定滑轮的角速度变化到w=0时,物体上升的高度;3)当物体回到原来位置时,定滑轮的角速度Rmm0wmmgFTaRm0FTaJRFTmaFmgTRaa解:解:1)根据对物体和定滑轮运动的受力分析,)根据对物体和定滑轮运动的受力分析,可得可得2/20RmJ 22/7
7、.81sradJmRmgRa2)定滑轮做匀角加速运动,因此:ta0t 7 .81100即st122. 0物体的加速度2/17. 8smRaa因此,物体上升的距离maRavH06. 02)(2223)当物体回到原来位置时,定滑轮的角度度大小仍为10rad/s2,方向垂直纸面向外方向垂直纸面向外角速度是矢量,不少同学忘记了交待方向角速度是矢量,不少同学忘记了交待方向 3-13 在半径为在半径为R1、质量为、质量为 m 的静止水的静止水平圆盘上,站一质量为平圆盘上,站一质量为 m 的人。圆盘可无摩的人。圆盘可无摩擦地绕通过圆盘中心的竖直轴转动。当这人擦地绕通过圆盘中心的竖直轴转动。当这人开始沿着与圆
8、盘同心,半径为开始沿着与圆盘同心,半径为R2(R1)的)的圆周匀速地走动时,设圆周匀速地走动时,设他相对于圆盘的速度为他相对于圆盘的速度为 v,问圆盘将以多大的,问圆盘将以多大的角速度旋转?角速度旋转?R1R2=R2v人对盘的角速度人对盘的角速度盘对地的角速度盘对地的角速度人和盘组成的系统角动量守恒人和盘组成的系统角动量守恒0+=R22mJ+=R2+v人对地的角速度人对地的角速度RJ1221=m解:解:0=R1221m+R22mR2+v()R1R2人的角动量为人的角动量为2 22RmRmvRL人地人=R1221m+R2mvR22m=R122+R2vR222“-”号表示圆盘转动方向与人走动方向相
9、反号表示圆盘转动方向与人走动方向相反(角速度是矢量,所以这句交待方向角速度是矢量,所以这句交待方向的话一定不能少的话一定不能少) 3-19 如图,弹簧的劲度系数为如图,弹簧的劲度系数为 k =2.0N/m,轮子的转动惯量为轮子的转动惯量为 0.5kg.m2 ,轮子,轮子半径半径 r =30cm。当质量为。当质量为60kg的物体落下的物体落下40cm时的速率是多大?假设开始时物体静时的速率是多大?假设开始时物体静止而弹簧无伸长。止而弹簧无伸长。解:弹簧的拉力是个变量,因此采用运动学解:弹簧的拉力是个变量,因此采用运动学的方法求解会比较麻烦。的方法求解会比较麻烦。取弹簧、轮子、物体、地球看作一个系统。取弹簧、轮子、物体、地球看作一个系统。该系统满足机械能守恒。该系统满足机械能守恒。以物体的初始位置为重力势能以物体的初始位置为重力势能0点位置点位置222212121Jmvkhmgh系统末能量:系统末能量:0系统初能量:系统初能量:系统末能量系统末能量=系统末能量系统末能量smrJmkhmghv/51. 1/222