《变频器在哪些情况下需要配制动电阻 附变频器制动电阻的确定.docx》由会员分享,可在线阅读,更多相关《变频器在哪些情况下需要配制动电阻 附变频器制动电阻的确定.docx(3页珍藏版)》请在第壹文秘上搜索。
1、变频器配制动电阻,主要是想通过制动电阻来消耗掉直流母线电容上的一部分能量,避免电容的电压过高。理论上如果电容存储的能量多,可以用来释放出来驱动电机,避免能量浪费,但是电容的容量有限,而电容的耐压也是有限的,当母线电容的电压高到一定程度,就可能会损坏电容了,有些还可能损坏IGBT,所以需要及时通过制动电阻来释放电,这种释放,是白白浪费掉的,是一种没有办法的做法。母线电容是个缓冲区,容纳能量有限三相交流电全部整流后,接入电容,满载运行时候,母线正常的电压大约是1.35倍,380*1.35=513伏,这个电压当然会实时波动的,但是最低不能低于480伏,否则会欠压报警保护。母线电容一般是两组450V电
2、解电容串联而成,理论耐压是900V,如果母线电压超过这个值,电容会直接爆掉了,所以母线电压是无论如何都不能达到900伏这么高压的。实际上,三相380伏输入的IGBT的耐压值是1200伏,往往要求工作在800伏以内,考虑到电压如果升高,都会有个惯性问题,也就是你马上让制动电阻工作了,母线电压也不会很快降低下来,所以很多变频器,都是设计在700伏左右就通过制动单元让制动电阻开始工作,让母线电压降低下来,避免往上继续冲。所以制动电阻设计,核心就是考虑到电容和IGBT模块的耐压问题,避免这两大重要的器件被母线的高电压冲坏掉了,这两类元件如果坏掉了,变频器也就无法正常工作了。快速停车要制动电阻,瞬间加速
3、也需要变频器母线电压之所以会变高,很多时候是变频器让电机工作在电子制动状态,让IGBT通过一定的导通顺序,利用电机是大电感电流不能突变,瞬间产生高压来往母线电容充电,这时候让电机快点降低速度下来。如果这时候没有制动电阻及时消耗掉母线的能量,母线电压将会持续变高而威胁变频器的安全了。如果负载不是很重,也没有什么快速停车要求,这种场合是不需要使用制动电阻的,即使你装了制动电阻,制动单元的工作阀值电压没有被触发,制动电阻也不会投入工作。除了大负荷减速场合需要增加制动电阻和制动单元来快速刹车外,实际上如果符合比较重,启动时间时间要求非常快那种,也需要制动单元和制动电阻来配合启动的,以往我试过用变频器带
4、动一种特殊的冲床,要求把变频器的加速时间设计成0.1秒,这时候满负荷启动,虽然负荷并不是非常重,但是因为加速时间太短了,这时候母线电压波动非常厉害,也会出现过压或者过流的情况,后来增加了外置的制动单元和制动电阻,变频器就能正常工作了。分析起来,是因为启动时间太短,母线电容的电压瞬间被掏空了,而整流器瞬间有大的电流充进来,引起母线电压突然变高,这样母线的电压波动太厉害,瞬间可能会超过了700伏,加上了制动电阻,就可以及时消除这个波动的高压,让变频器工作在正常状态。还有一种特殊的情况,是矢量控制场合,电机的扭矩和速度方向相反,或者工作在零转速百分百扭矩输出的场合,比如吊机掉了重物停在半空中,收放卷
5、场合需要力矩控制,都需要让电机工作在发电机状态,源源不断的电流会反充到母线电容中,通过制动电阻,就可以及时消耗掉这些能量,保持母线电压平衡稳定了。很多小变频器,比如3.7KW的,往往都内置了制动单元和制动电阻,应该是考虑到母线电容调小的缘由吧,而小功率的电阻和制动单元并没有那么贵。变频器制动电阻的确定摘要从变频器的动力制动原理出发,介绍了采用动力制动方式时对变频器制动电阻的精确选择和注意事项。关键字变频调速系统;制动电阻;再生能量O引言在通用变频器、异步电动机和机械负载所组成的变频调速传动系统中,当电动机减速或所传动的位能负载下放时,异步电动机将处于再生发电制动状态。传动系统中所储存的机械能经
6、异步电动机转换成电能,通过逆变器的续流二极管整流后回馈到直流侧,致使直流侧储能电容器的电压上升。如果电动机的制动并不快,电容器的电压升高就不十分明显。相反,如果电动机制动较快时,电容器的电压会上升很高,过高的电压会使变频器中的“制动过电压保护”动作,甚至造成变频器损坏。目前,在变频调速系统中,电动机的快速制动或准确停车,一般采用动力制动和再生制动。对于动力制动方式,系统所需的制动转矩在电动机额定转矩的20%以下且制动并不快时,则不需要外接制动电阻,仅电动机内部的有功损耗,就可以使直流侧电压限制在过电压保护的动作值以下。反之,则需要选择制动电阻来耗散电动机再生的这部分能量。1变频器动力制动原理1
7、.1 变频器电压检测及驱动电路为了实现电气制动,变频器的直流侧必须设置电压检测电路,检测电容器的电压,以实现能耗制动。图1为一种电压检测电路的工作原理图。电压检测电路主要由电压采样电阻Rl、R2、R3,滞环比较器LM399,逻辑转换器件等组成。电压采样回路直接检测变频器直流侧电容器C两端的电压,当被检测电压值超过设定的允许值时,滞环比较器翻转,输出端接近0V,经逻辑转换后,触发制动晶体管V导通,经过电阻RO释放,使电压下降;反之,当检测电压低于设定值时,滞环比较器翻转回原状态,使V关断。特别强调的是,滞环比较器上下限值的设定很重要。一般选择原则:上限电压设定为正常直流电压的1.3倍,下限电压应
8、考虑电网正常电压的波动,一般整定为略高于电网电压向上波动的最大值。1.2 变频器制动单元如图2虚线框所示为制动单元PW的实际电路,包括晶体管V、二极管DI、D2和制动电阻RB。如果回馈能量较大或要求强制动时,还可以选用接于H、G两点间的外接制动电阻REB。当电机制动能量经逆变器回馈到直流侧时,通过V的导通消耗在制动电阻RB或RB/REB上,实现限制电压保护动作的目的。因此,外接电阻REB正常时不消耗能量,是间歇式工作。2制动电阻的选择2.2 制动电阻的计算在用外接制动电阻进行制动时,外接电阻应能吸取负载位能所转变的电能的80%,其中20%可通过电机以热能耗散的形式被消耗,此时制动电阻值由于V和
9、RB、REB构成的放电回路中,其最大电流受到V的最大允许电流IC(已考虑安全系数)的限2.3 制动时平均消耗功率的计算如2.2中所述,制动中电动机自身消耗的功率相当于20%额定制动功率,则制动电阻上消耗的平均功率2.4 制动电阻额定功率PR的计算视电动机是否重复减速,制动电阻额定功率的选择是不同的,图3所示为电动机减速模式。当非重复减速时,制动电阻的间歇时间(T-tS)600S0通常采用连续工作制电阻器,当间歇制动时,电阻器的允许功率将增加。允许功率增加系数m与减速时间的关系如图4(a)所示。重复减速情况下,允许功率增加系数m和制动电阻使用率D越tS/T之间的关系曲线如图4(b)所示。根据电动
10、机运行的模式,可以确定制动时平均消耗功率和电阻器的允许功率增加系数,据此可以得3结语制动单元电阻的正确选择应用,可以缩短大惯量负载的自由停车时间,实现快速停车或准确停车;还可以在位能负载下放时,实现再生运行。我厂电解车间多功能机组设计时没有考虑增设制动电阻,造成大车行走自由停车时间过长,滑行距离长,存在生产作业安全隐患;工具小车、出铝小车很难实现准确定位,影响作业效率。经过制动电阻的增设改造,以上问题迎刃而解。但需要注意的是,在选择制动电阻时,不但要考虑各个厂家变频器制动电阻的选择要求,而且根据用户控制要求和使用环境的不一样,必须通过速度、转矩等测量,再进行计算,正确选用制动电阻,才能达到用户的控制要求。