《3.1.2 第1课时.docx》由会员分享,可在线阅读,更多相关《3.1.2 第1课时.docx(6页珍藏版)》请在第壹文秘上搜索。
1、第三章3.13.1.1第1课时A级基础巩固一、选择题1.若AABC中,C=90。,AC=3,BC=4,则Sin(A-8)的值是(D)3n4A.B.-24725,253434解析由条件可知cosA=,SinA=Sin8=g,COSB=sin(AB)=SinAcosB-44337cos.sinB=5555=252 .设W(0,芬若Sina=则gCoS(a+;)等于(B)A.IB.解析2cos(a+j)=2(cosa2-sina*9)=55=5,3 .COsJ的值等于(C)B.A.D.小+啦4解析CO招=cos居=_(COSWCOs;_Si吟sin.0v23262一6X2-2,2厂4B. 2D. 2
2、45co哈si哈的值是(B)A.02-2s1n3cosj- Sin 强=C.y2解析.12)=2(smjc0sj2-s3snj2=2sm(1一五)=2sin;=啦.5.85(工+2)+2皿;1+必由可化简为(A)A.cosxB.sinxC.s(xy)D.s(-y)解析原式=cos(x+y)+y+2sin(x+y)siny=cos(x+y)coSy-Sin(X+y)siny+2sin(x+y)siny=cos(y)sysin(xj)siny=cosx.356 .已知COSa=g,cos(ct)=-,q、夕都是锐角,则COS夕=(C)解析V,是锐角,0。+夕乂又cos(+0=一,0,asin(+6
3、)=,.+/?为钝角,34又由sin(+份=得,cos(+A)=-g,由Sina=邛得,COSQ=培,X手=需故4/.CoS=CoS(+)=cos(+0)CoSa+sin(+为Sina=-X选B.443.已知COS(+0)=g,cos(a-fi)=-jf则COSaCOS夕的值为(A)4A.0B.gC.0或3D.0或与4解析由条件得,cosacosQ-sinsi印=子4cosacossinasin/?=一亍左右两边分别相加可得coscosy7=0.sin470-SinI7cos3004cos17(C)A.乎B.VC.ID.当解析Sin470-sinl708s30CoSl70sin(300+17)
4、-sinl70cos300cos17sin300cos170+cos300sin17。一Sin17。COS30。cos17皿端j30。=;.二、填空题45.若cos(a)cosasin(a)sina=,且4500少540,3+4310一4解析由已知得cos(a+0)a=COS尸=一,3V450o540o,.siM=g,.sin(60f=坐X(-力宝=-若黑316.若cos(a+0=g,cos(a-则tanatanS=_/_.sin(60o-)=-解析由已知,得R1COS(Q+6)=,3cos(a一4)=亍CoSaCOs-sinasiM=g,即彳3CoSaCOSA+sinasiM=.(COSCO
5、S=T,;sinasin/?=.CSinaSinS1所以tantaM=CoSacosA=三、解答题7 .已知向量=(cos,sina),力=(CoS夕,Sins),|。一例二=求cos(一)的值;(2)若一5kO2=予又=(cos,sina),O=(COS6,sin/?),.*.a1=b2=1,ab=cosacossinasin=cos(-),3:,cos(a-)=.(2),50tt,,0a00所以sina=Icos2a=,cos(a)=1-sin2(a-?)=cos(2-)cos()=coscos(-)SinaSin(a一4)_a/53K)25VT0V2-510510-10,(2)cos=c
6、osa(a)=cosacos(a-)SinaSin(a一尸)5v310,25vIO2-510510-2,又因为夕(0,2),所以C级实力拔高已知cos(a一份=-H,cos(a+S)=I且a),a+Q管,2兀).求cos2a,cos2及角尸的值.思路分析探讨角的范围时,a一般看作。+(一为,先求出一夕的范围,再求a(-.)的范围.解析由a6像),且cos(a-4)=-H,得sin(a-)=.由。+尸(即,2),且cos(a+)=.得sin(a+用=一卷.*.cos2a=cos(a+0)+(X)=cos(a)cos(a-)sin(a+为Sin(Q-)=_1212_CJAA=_1191313I1313-169,cos2=cos(a+)-(a-)=cos(a夕)cos(a-)sin(a6)sin(a-)=1313+()=1