3.2独立性检验的基本思想及其初步应用(2课时选修23).ppt

上传人:p** 文档编号:464291 上传时间:2023-09-07 格式:PPT 页数:43 大小:838.50KB
下载 相关 举报
3.2独立性检验的基本思想及其初步应用(2课时选修23).ppt_第1页
第1页 / 共43页
3.2独立性检验的基本思想及其初步应用(2课时选修23).ppt_第2页
第2页 / 共43页
3.2独立性检验的基本思想及其初步应用(2课时选修23).ppt_第3页
第3页 / 共43页
3.2独立性检验的基本思想及其初步应用(2课时选修23).ppt_第4页
第4页 / 共43页
3.2独立性检验的基本思想及其初步应用(2课时选修23).ppt_第5页
第5页 / 共43页
3.2独立性检验的基本思想及其初步应用(2课时选修23).ppt_第6页
第6页 / 共43页
3.2独立性检验的基本思想及其初步应用(2课时选修23).ppt_第7页
第7页 / 共43页
3.2独立性检验的基本思想及其初步应用(2课时选修23).ppt_第8页
第8页 / 共43页
3.2独立性检验的基本思想及其初步应用(2课时选修23).ppt_第9页
第9页 / 共43页
3.2独立性检验的基本思想及其初步应用(2课时选修23).ppt_第10页
第10页 / 共43页
亲,该文档总共43页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

《3.2独立性检验的基本思想及其初步应用(2课时选修23).ppt》由会员分享,可在线阅读,更多相关《3.2独立性检验的基本思想及其初步应用(2课时选修23).ppt(43页珍藏版)》请在第壹文秘上搜索。

1、2 2定量变量回归分析(画散点图、相关系数r、定量变量回归分析(画散点图、相关系数r、变量 相关指数R、残差分析)变量 相关指数R、残差分析)分类变量分类变量研究两个变量的相关关系:定量变量:体重、身高、温度、考试成绩等等。定量变量:体重、身高、温度、考试成绩等等。变量 分类变量:性别、是否吸烟、是否患肺癌、变量 分类变量:性别、是否吸烟、是否患肺癌、宗教信仰、国籍等等。宗教信仰、国籍等等。两种变量:独立性检验独立性检验本节研究的是两个分类变量的独立性检验问题。在日常生活中,我们常常关心在日常生活中,我们常常关心分类变量之间是否有关系分类变量之间是否有关系:例如,吸烟是否与患肺癌有关系?例如,

2、吸烟是否与患肺癌有关系?性别是否对于喜欢数学课程有影响?等等。性别是否对于喜欢数学课程有影响?等等。.,.像这类变量称为别类表示个体所属的不同值这种变量的不同分类变量分类变量 吸烟与肺癌列联表吸烟与肺癌列联表不患肺癌不患肺癌患肺癌患肺癌总计总计不吸烟不吸烟77757775424278177817吸烟吸烟20992099494921482148总计总计98749874919199659965为了调查吸烟是否对肺癌有影响,某肿瘤研究所随机为了调查吸烟是否对肺癌有影响,某肿瘤研究所随机地调查了地调查了99659965人,得到如下结果(单位:人)人,得到如下结果(单位:人)在不吸烟者中患肺癌的比重是在

3、不吸烟者中患肺癌的比重是 在吸烟者中患肺癌的比重是在吸烟者中患肺癌的比重是 说明:吸烟者和不吸烟者患肺癌的可能性存在差异,吸烟者患说明:吸烟者和不吸烟者患肺癌的可能性存在差异,吸烟者患肺癌的可能性大。肺癌的可能性大。0.54%0.54%2.28%2.28%探究探究.,称为频数表的样列出的两个分类变量这像列联表列联表n列联表n定义:列出的两个分类变量的称为列联表n22列联表n一般地,假设两个分类变量X和Y,它们的取值分别为和,其样本频数列联表(也称为22列联表)为下表.频数表x1,x2y1,y2n一般地,假设有两个分类变量X和Y,它们的可能取值分别为x1,x2和y1,y2,其样本频数列联表(即2

4、2列联表)为:n(其中n 为样本容量)y1y2合计x1ababx2cdcd总计 acbdabcdabcd.,况况状状反映出相关数据的总体反映出相关数据的总体能更直观地能更直观地图图三维柱形图和二维条形三维柱形图和二维条形与表格相比与表格相比不患肺癌患肺癌吸烟不吸烟不患肺癌患肺癌吸烟不吸烟080007000600050004000300020001000三维柱形图二维条形图在三维柱形图中,主对角线上两个柱形高度的乘积与副对角线上两个柱形高度的乘积相差越大,两个分类变量有关系的可能性就越大.等高条形图等高条形图与表格相比,更能直观地反映出两个分类变量间是否互相影响常用等高条形图展示列联表数据的频率

5、特征 不吸烟吸烟00.10.20.30.40.50.60.70.80.91不吸烟不吸烟吸烟吸烟患肺癌比例不患肺癌比例等高条形图等高条形图更清晰地表达了两种情况下患肺癌的比例。某企业为了考察同一种产品在甲、乙两条生产线的某企业为了考察同一种产品在甲、乙两条生产线的产品合格率,同时各抽取产品合格率,同时各抽取100件产品,其中甲线中件产品,其中甲线中合格产品的个数为合格产品的个数为97,乙线中合格产品的个数为,乙线中合格产品的个数为95。请做出列联表,三维柱形图与二维条形图。请做出列联表,三维柱形图与二维条形图。合格不合格总计甲生产线973100乙生产线955100总计1928200n122列联表

6、是传统的调查研究中最常用的方法之一,用于研究两个变量之间相互独立还是存在某种关联性,它适用于分析两个变量之间的关系n2在实际问题中,判断两个分类变量的关系的可靠性时,一般利用随机变量K2来确定,而不利用三维柱形图和二维条形图 上面我们通过分析数据和图形,得到的直观印象是吸烟和上面我们通过分析数据和图形,得到的直观印象是吸烟和患肺癌有关,那么事实是否真的如此呢?患肺癌有关,那么事实是否真的如此呢?这需要用统计观点这需要用统计观点来考察这个问题。来考察这个问题。现在想要知道能够以多大的把握认为现在想要知道能够以多大的把握认为“吸烟与患肺癌有关吸烟与患肺癌有关”,为此先假设为此先假设 H0:吸烟与患

7、肺癌没有关系:吸烟与患肺癌没有关系.不患肺癌不患肺癌患肺癌患肺癌总计总计不吸烟不吸烟aba+b吸烟吸烟cdc+d总计总计a+cb+da+b+c+d把表中的数字用字母代替,得到如下用字母表示的列联表把表中的数字用字母代替,得到如下用字母表示的列联表 用用A表示不吸烟,表示不吸烟,B表示不患肺癌,则表示不患肺癌,则“吸烟与患肺癌没有关系吸烟与患肺癌没有关系”等价于等价于“吸烟与患肺癌独立吸烟与患肺癌独立”,即假设,即假设H0等价于等价于 P(AB)=P(A)P(B).因此因此|ad-bc|越小,说明吸烟与患肺癌之间关系越弱;越小,说明吸烟与患肺癌之间关系越弱;|ad-bc|越大,说明吸烟与患肺癌之

8、间关系越强。越大,说明吸烟与患肺癌之间关系越强。不患肺癌不患肺癌患肺癌患肺癌总计总计不吸烟不吸烟aba+b吸烟吸烟cdc+d总计总计a+cb+da+b+c+dadbc即aa+ba+caa+ba+cnnnnnna+ba+bP(A),P(A),n na+ca+cP(B),P(B),n n.a aP(AB)P(AB)n n其中为样本容量,即n=a+b+c+dn=a+b+c+d在表中,在表中,a恰好为事件恰好为事件AB发生的频数;发生的频数;a+b和和a+c恰好分别为事恰好分别为事件件A和和B发生的频数。由于频率接近于概率,所以在发生的频数。由于频率接近于概率,所以在H0成立的条成立的条件下应该有件下

9、应该有(a+b+c+d)a(a+b)(a+c),为了使不同样本容量的数据有统一的评判标准,基于上述分为了使不同样本容量的数据有统一的评判标准,基于上述分析,我们构造一个随机变量析,我们构造一个随机变量-卡方统计量卡方统计量22(),()()()()其中为样本容量。n adbcKab cdac bdnabcd(1)若若 H0成立,即成立,即“吸烟与患肺癌没有关系吸烟与患肺癌没有关系”,则,则K2应很小。应很小。根据表根据表3-7中的数据,利用公式(中的数据,利用公式(1)计算得到)计算得到K2的观测值为:的观测值为:那么这个值到底能告诉我们什么呢?那么这个值到底能告诉我们什么呢?242 2099

10、56.6327817 2148 9874 91k9965(7775 49)(2)独立性检验独立性检验2000HKkkk在假设成立的前提下,的观测值 应该比较小因此,当 很小时,说明在一定的可信程度上H 成立;很大时,说明没有充分的证据说明H 成立。k k大小的标准是什么呢?大小的标准是什么呢?0k临界值20002000当kk 时,含义是有(1-P(K k))100%的把握说明H 不成立,而这种判断可能出错,出错的概率不会超过P(K k)当k10.828n又P(K210.828)0.001,n故在犯错误概率不超过0.001的前提下认为对“男女同龄退休”这一问题的看法与性别有关n点评可以利用独立性

11、检验来判断两个分类变量是否有关系,具体做法是:n5月31日是“世界无烟日”,2009年的主题是“让肺自由呼吸”为探究患肺癌是否与吸烟有关,某校研究性学习小组调查了1339名50岁以上的人,调查结果如下表所示:患肺癌不患肺癌总计吸烟28579607不吸烟7725732总计3513041339n试问:能否在犯错误的概率不超过0.01的前提下认为50岁以上的人患肺癌与吸烟有关系?n解析依题意可知:n6.635,n又P(K26.635)0.01,n因此,在犯错误的概率不超过0.01的前提下认为吸烟与患肺癌有关.n例3为了解铅中毒病人是否有尿棕色素增加现象,分别对病人组和对照组的尿液作尿棕色素定性检查,

12、结果如下,问铅中毒病人和对照组的尿棕色素阳性数有无差别?组别阳性数阴性数合计铅中毒病人29736对照组92837合计383573n解析由上述列联表可知,在铅中毒病人中尿棕色素为阳性的占80.56%,而对照组仅占24.32%.说明他们之间有较大差别n根据列联表作出三维柱形图(如图1),二维条形图(如图2),频率分布条形图(如图3所示),由上述三图可知,铅中毒病人中与对照组相比较,尿棕色素为阳性差异明显,因此铅中毒病人与尿棕色素为阳性存在关联关系n某学校对学生课外活动内容进行调查,结果整理成下表:n利用图形判断学生课外活动的类别与性别是否有关系?体育文娱总计男生212344女生62935总计275

13、279n解析某等高条形图如图所示n由图可以直观地看出喜欢体育还是喜欢文娱在性别上有较大差异,说明课外活动的类别与性别在某种程度上有关系n练习:n1调查男女学生购买食品时是否看出厂日期与性别有无关系时,最有说服力的是n()nA期望B方差nC正态分布 D独立性检验n答案Dn210名学生在一次数学考试中的成绩如下表:n要研究这10名学生成绩的平均情况,则最能说明问题的是()nA概率 B期望nC方差 D独立性检验n答案B分数100115120125人数2431n练习:3.下面是一个22列联表n则表中a、b处的值分别为()nA94、96 B52、50nC52、59 D54、52n答案Cy1y2合计x1a

14、2173x272027合计b41100n4用K2统计量进行独立性检验时,使用的表称为_,要求表中的四个数据_n答案22列联表均大于5n5若两个分类变量x和y的列联表为:n则x与y之间有关系的概率约为_n答案99%y1y2x1615x24010n6为调查学生对国家大事关心与否是否与性别有关,在学生中进行随机抽样调查,结果如下表,根据统计数据作出合适的判断分析.关心不关心合计男生18218200女生17624200合计35842400n点评根据随机变量K2的值判断两分类变量是否有关的步骤:第一,假设两分类变量无关,第二,由数据及公式计算K2的观测值k,第三,将k的值与临界值比较得出结论思考:思考:

15、利用上面的结论,你能从列联表的三维柱形图中利用上面的结论,你能从列联表的三维柱形图中看出两个分类变量是否相关呢?看出两个分类变量是否相关呢?表表1-11 2x2联表联表 一般地,假设有两个分类变量一般地,假设有两个分类变量X和和Y,它们的值域,它们的值域分别为分别为x1,x2和和y1,y2,其样本频数列联表(称为其样本频数列联表(称为2x2列列联表)为:联表)为:y1y2总计总计x1aba+bx2cdc+d总计总计a+cb+da+b+c+d 若要判断的结论为:H1:“X与Y有关系”,可以按如下步骤判断H1成立的可能性:aabccd2、可以利用独立性检验来考察两个分类变量是否有关系,并、可以利用

16、独立性检验来考察两个分类变量是否有关系,并且能较精确地给出这种判断的可靠程度。且能较精确地给出这种判断的可靠程度。1、通过三维柱形图和二维条形图,可以粗略地判断两个变、通过三维柱形图和二维条形图,可以粗略地判断两个变量是否有关系量是否有关系,但是这种判断无法精确地给出所得结论的可靠但是这种判断无法精确地给出所得结论的可靠程度。程度。(1)在三维柱形图中,)在三维柱形图中,主对角线上两个柱形高度的乘积主对角线上两个柱形高度的乘积ad与副对角线上两个柱形高度的乘积与副对角线上两个柱形高度的乘积bc相差越大,相差越大,H1成立的成立的可能性就越大。可能性就越大。(2)在二维条形图中)在二维条形图中,可以估计满足条件可以估计满足条件X=x1的个体中具的个体中具有有Y=y1的个体所占的比例的个体所占的比例 ,也可以估计满足条件,也可以估计满足条件X=x2的个体中具有的个体中具有Y=y1的个体所占的比例的个体所占的比例 。两个比例相差越。两个比例相差越大,大,H1成立的可能性就越大。成立的可能性就越大。aabccd在实际应用中,要在获取样本数据之前通过下表确定临界值:在实际应用中,要在获取样本数据

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高等教育 > 大学课件

copyright@ 2008-2023 1wenmi网站版权所有

经营许可证编号:宁ICP备2022001189号-1

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。第壹文秘仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知第壹文秘网,我们立即给予删除!