聚酰胺共混改性.ppt

上传人:p** 文档编号:465641 上传时间:2023-09-07 格式:PPT 页数:12 大小:211.50KB
下载 相关 举报
聚酰胺共混改性.ppt_第1页
第1页 / 共12页
聚酰胺共混改性.ppt_第2页
第2页 / 共12页
聚酰胺共混改性.ppt_第3页
第3页 / 共12页
聚酰胺共混改性.ppt_第4页
第4页 / 共12页
聚酰胺共混改性.ppt_第5页
第5页 / 共12页
聚酰胺共混改性.ppt_第6页
第6页 / 共12页
聚酰胺共混改性.ppt_第7页
第7页 / 共12页
聚酰胺共混改性.ppt_第8页
第8页 / 共12页
聚酰胺共混改性.ppt_第9页
第9页 / 共12页
聚酰胺共混改性.ppt_第10页
第10页 / 共12页
亲,该文档总共12页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

《聚酰胺共混改性.ppt》由会员分享,可在线阅读,更多相关《聚酰胺共混改性.ppt(12页珍藏版)》请在第壹文秘上搜索。

1、聚酰胺改性前言前言 聚酰胺(尼龙,英文缩写为PA)是通用工程塑料中产量最大、品种最多、用途最广、性能优良的基础树脂。具有很高的机械强度、熔点高、耐磨、耐油、耐热性能优良等优点,广泛应用于汽车、电子电气、机械等领域。但由于聚酰胺的吸水性较大,造成产品尺寸稳定性差,干态或低温下冲击强度低等缺点,也限制了其更广泛的应用。对其进行改性可以得到性能多样的产品,拓宽其应用领域。为此,人们对聚酰胺的改性进行了大量研究。本文对近些年来聚酰胺改性方面的研究进展进行综述。PA6的增容改性的增容改性聚酰胺6(PA6)具有优良的力学性能,并且耐磨性和自润滑性好,易成型加工,是应用极广的工程塑料。但PA6具有吸湿大、尺

2、寸不稳定、成型收缩大的缺点。而聚对苯二甲酸丁二醇酯(PBT)具有刚度好、强度高、耐热老化性优异、耐有机溶剂性好、易加工成型等优点,同时也具有冲击韧性差、在高温、高湿环境下易分解等缺点。将两者制成合金,可改善PA6的吸水性和PBT的冲击脆性。陈兴江等人采用固体环氧树脂(EP)反应增容聚酰胺6/聚对苯二甲酸丁二醇酯(PA6/PBT)共混物。结果表明:结果表明:EP的加入降低了共混物的界面张力,使分散相粒径明显细化;当PA6/PBT=80/20,EP含量为11.5份时,共混物的改性效果较好;当PA6用量少于30份或超过70份时,EP的加入可明显提高共混物的冲击性能和拉伸性能;随着EP的加入,共混物的

3、流动性降低。并采用固体环氧树脂(EP)反应增容聚酰胺6/聚对苯二甲酸丁二醇酯(PA6/PBT)共混物。EP的加入降低了共混物的界面张力,使分散相粒径明显细化;当PA6/PBT=80/20,EP含量为11.5份时,共混物的改性效果较好;当PA6用量少于30份或超过70份时,EP的加入可明显提高共混物的冲击性能和拉伸性能;随着EP的加入,共混物的流动性降低。2.OMMT改性PA6制备纳米复合材料 采用环氧树脂改性MMT,得到有机化改性的OMMT,然后通过熔融插层法制备PA6/OMMT 纳米复合材料,并利用X 射线衍射仪、透射电子显微镜、万能材料试验机等研究了纳米复合材料的形态结构、力学性能及热稳定

4、性结果表明,经环氧树脂改性得到的OMMT 的层间距明显增加,从未改性的1.22 nm 增加到5.13 nm,并以纳米尺度分散于PA6 基体中;随着OMMT 含量的增加,PA6/OMMT 复合材料的拉伸强度、弯曲强度和弯曲模量增加,热变形温度提高,拉伸强度可达76 MPa,弯曲模量达到3.462 GPa,热变形温度为134;PA6/OMMT 复合材料失重10%时的温度为422,比纯PA6 提高16,提高了PA6 的热稳定性。3改性聚酰胺-胺树枝状高分子 合成了PAMAM-PEG作为基因载体,PAMAM-PEG 细胞毒性能有效降低,但转染率也有所降低,引入少量(10%)PEG 改性的效果更为显著。

5、王 持等人以IDPI 为偶联剂,由相对分子量2000 的甲氧端基聚乙二醇(mPEG-2k)和5代聚酰胺-胺(PAMAM-G5)通过二步法合成了聚酰胺-胺-聚乙二醇(PAMAM-PEG)共聚物。MTT法的结果发现,PEG修饰后共聚物的细胞毒性明显降低,随PEG 结合率的提高,毒性下降更明显。凝胶阻滞电泳说明,PAMAM-PEG可以与DNA结合形成复合物。动态光散射的测定数据证明,当N/P50时,共聚物/DNA复合物的粒径在150200 nm,zeta电位在1025 mV。合成了PAMAM-PEG作为基因载体,PAMAM-PEG 细胞毒性能有效降低,但转染率也有所降低,引入少量(10%)PEG 改

6、性的效果更为显著。王 持等人以IDPI 为偶联剂,由相对分子量2000 的甲氧端基聚乙二醇(mPEG-2k)和5代聚酰胺-胺(PAMAM-G5)通过二步法合成了聚酰胺-胺-聚乙二醇(PAMAM-PEG)共聚物。MTT法的结果发现,PEG修饰后共聚物的细胞毒性明显降低,随PEG 结合率的提高,毒性下降更明显。凝胶阻滞电泳说明,PAMAM-PEG可以与DNA结合形成复合物。动态光散射的测定数据证明,当N/P50时,共聚物/DNA复合物的粒径在150200 nm,zeta电位在1025 mV。聚合率的提高,毒性下降更明显。PAMAM-PEG 共聚物可以与DNA 自组装形成复合物,其粒径在200nm左

7、右,zeta电位在1025 mV,表现出良好的基因载体特性,在N/P50时,PAMAM-PEG共聚物的基因转染率稍低于PAMAM-G5,但可以通过提高N/P值或延长转染时间的方法提高转染率。用二氧化硅改性 以发散法合成了以SiO2为核的树枝状大分子聚酰胺胺(PAMAM),并用苯甲醛对端基为氨基的整代PAMAM 进行封端,制备了一种以SiO2为亲水硬核、希夫碱为末端基的PAMAM 疏水软壳的核-壳结构材料。红外光谱、紫外-可见吸收光谱证实了产物结构,亲水疏水性分析希夫碱为末端基的PAMAM接枝改性的SiO2具有较好的疏水性,同时具有较好的对铜离子吸附性能和抗菌性能。希夫碱为末端基的PAMAM 改

8、性SiO2是一种核壳结构及亲水亲油性材料,PAMAM 接枝代数越高,则亲水亲油性能越好。改性聚酰胺超细纤维 通过合理的超细纤维酶法水解改性技术,利用1398蛋白酶对聚酰胺超细纤维表面进行水解,以增加超细纤维上的亲水基团,改变纤维结构,改善超细纤维合成革的手感、透水汽性能和物理机械性能。研究结果表明:适宜的酶处理可以分散纤维束,并使纤维束的编织形态发生变化。能使聚酰胺超细纤维的手感得到了较大的改善。强烈的酶处理可使聚酰胺分子链发生断裂,使聚酰胺超细纤维的物理性能降低。经过适宜的酶处理以后,会使纤维表面的酰胺键适度水解,从而增加了纤维表面的亲水基团,起到了良好的增深作用,同时也使基布的透水汽性得到明显改善。经过酶法处理,可降低聚酰胺超细纤维的玻璃化转变温度。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 建筑/环境 > 环保行业

copyright@ 2008-2023 1wenmi网站版权所有

经营许可证编号:宁ICP备2022001189号-1

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。第壹文秘仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知第壹文秘网,我们立即给予删除!