《有理数总复习精品教育.ppt》由会员分享,可在线阅读,更多相关《有理数总复习精品教育.ppt(37页珍藏版)》请在第壹文秘上搜索。
1、1.负数负数 2.有理数有理数 3.数轴数轴4.互为相反数互为相反数5.互为倒数互为倒数6.有理数的绝对值有理数的绝对值7.有理数大小的比较有理数大小的比较8.科学记数法、近似数科学记数法、近似数一、有理数的基本概念一、有理数的基本概念有有 理理 数数 总总 复复 习习二、有理数的运算二、有理数的运算 加、减、乘、除、乘方运算加、减、乘、除、乘方运算一、有理数的基本概念一、有理数的基本概念1.负数:负数:在正数前面加在正数前面加“”的数;的数;0既不是正数,也不是负数。既不是正数,也不是负数。判断:判断:1)a一定是正数;一定是正数;2)a一定是负数;一定是负数;3)()(a)一定大于)一定大
2、于0;4)0是正整数。是正整数。2.有理数:有理数:整数和分数统称有理数。整数和分数统称有理数。有理数有理数整数整数分数分数正整数正整数负整数负整数正分数正分数负分数负分数有理数有理数正有理数正有理数零零负有理数负有理数正整数正整数正分数正分数负整数负整数负分数负分数自然数自然数零零2211-3.14-12-3 0,-(-),|-8|,-5924例:在,中,哪些是整数、分数、正整数、负分数、非负数123 08整数有:,-,-2211-3.14-,-(-),-5924分数有:,12,|-8|正整数有:21-3.14,-,-54负分数有:2112,0,-(-),|-8|,92非负数有:3.3.数数
3、 轴轴规定了原点、正方向和单位长度的直线规定了原点、正方向和单位长度的直线.1 1)在数轴上表示的两个数,)在数轴上表示的两个数,右边的数总比左边的数大;右边的数总比左边的数大;2 2)正数都大于)正数都大于0,0,负数都小于负数都小于0 0;正数大于一切负数;正数大于一切负数;-3-3 2 2 1 1 0 1 2 3 40 1 2 3 43 3)所有有理数都可以用数轴上)所有有理数都可以用数轴上 的点表示。的点表示。例:在数轴上表示绝对值不小于在数轴上表示绝对值不小于2 2而又不大而又不大于于5.15.1的所有整数;并求出绝对值小于的所有整数;并求出绝对值小于4 4的所的所有整数的和与积有整
4、数的和与积0-6-5-4-3-2-1654321-5-54 43 32 25 5-2-2-3-3-4-40 00 4.4.相反数相反数 只有符号不同的两个数,只有符号不同的两个数,其中一个是另一个的相反数。其中一个是另一个的相反数。1 1)数)数a a的相反数是的相反数是-a-a2 2)0 0的相反数是的相反数是0.0.-4-3-4-3 2 2 1 1 0 1 2 3 40 1 2 3 4-2-22 2-4-44 43 3)若)若a a、b b互为相反数,则互为相反数,则a+b=0.a+b=0.(a a是任意一个有理数);是任意一个有理数);5.5.倒倒 数数 乘积是乘积是1 1的两个数互为倒
5、数的两个数互为倒数 .1 1)a a的倒数是的倒数是 (a0a0););a13 3)若)若a a与与b b互为倒数,则互为倒数,则ab=1.ab=1.2 2)0 0没有倒数没有倒数 ;例:下列各数,哪两个数互为倒数?例:下列各数,哪两个数互为倒数?8 8,-1-1,+(-8-8),),1 1,81)81(6.6.绝对值绝对值一个数一个数a a的绝对值就是数轴上的绝对值就是数轴上 表示数表示数a a的点与原点的距离。的点与原点的距离。1 1)数)数a a的绝对值记作的绝对值记作a a;若若a a0 0,则,则a a=;2 2)若若a a0 0,则,则a a=;若若a=0a=0,则,则a a=;-
6、3-3 2 2 1 1 0 1 2 3 40 1 2 3 42 23 34 4a a-a-a0 03)3)对任何有理数对任何有理数a,a,总有总有a a0.0.判断:判断:(1)|5|5|(2)|0.3|0.3|(3)|3|0 (4)|1.4|0 (5)有理数的绝对值一定是正数有理数的绝对值一定是正数 (6)若若ab,则,则|a|b|(7)若若|a|b|,则,则ab (8)若若|a|a,则,则a必为负数必为负数 (9)互为相反数的两个数的绝对值相等互为相反数的两个数的绝对值相等练习练习若(x-1)2+|y+4|=0,则3x+5y=_ X-1=0,y+4=0,x=1,y=-43x+5y=31+5
7、(-4)=3-20=-17若|a-3|+|3a-4b|=0,则-2a+8b=_|7|=(),|-7|=()绝对值是7的数是()若|3-|+|4-|=_1 1已知|x|=3,|y|=2,且xy,则x+y=_|x|=3,|y|=2x=3,y=2 xyx不能为3x=-3,y=2 或 x=-3,y=-2x+y=-3+2=-1 或 x+y=-3-2=-57.7.有理数大小的比较有理数大小的比较1 1)可通过数轴比较:)可通过数轴比较:在数轴上的两个数,右边的数在数轴上的两个数,右边的数总比左边的数大;总比左边的数大;正数都大于正数都大于0 0,负数都小于,负数都小于0 0;正数大于一切负数;正数大于一切
8、负数;2 2)两个负数,绝对值大的反而小。)两个负数,绝对值大的反而小。即即:若若a a0,b0,b0,0,且且a ab b,则则a a b.b.8.8.科学记数法、近似数科学记数法、近似数1.1.把一个大于把一个大于1010的数记成的数记成a a1010n n的形式,其中的形式,其中a a是整数数位只有一位是整数数位只有一位的数,这种记数法叫做的数,这种记数法叫做科学记数法科学记数法 .2.2.一个近似数,。一个近似数,。一只苍蝇的腹内细菌多达2800万个,你能用科学记数法表示吗?28002800万个万个=2.810103 3(万个(万个)或或 28002800万个万个=28 000 000
9、=28 000 000个个=2.8=2.810107 7个个1.03106 6有几位整数?3.010n n(n是正整数)有几位整数?(n+1位整数)(1 030 0001 030 000)(有(有7 7位整数)位整数)例7下列由四舍五入得到的近似数,各精确到哪一位?(1)43.8(2)0.03086(3)2.4万(4)6104 (5)6.0104解:(1)43.8精确到十分位(2)0.03086精确到十万分位(3)2.4万精确到千位(4)6104 精确到万位(5)6.0104 精确到千位1.1.运算法则运算法则1 1)有理数)有理数加法加法法则法则2 2)有理数)有理数减法减法法则法则3 3)
10、有理数)有理数乘法乘法法则法则4 4)有理数)有理数除法除法法则法则5 5)有理数的)有理数的乘方乘方1)1)有理数加法法则有理数加法法则 同号两数相加同号两数相加,取相同的符号取相同的符号,并把绝对值相加;并把绝对值相加;异号两数相加异号两数相加,取绝对值较大取绝对值较大的加数的符号的加数的符号,并用较大的绝对值并用较大的绝对值减去较小的绝对值;互为相反数减去较小的绝对值;互为相反数的两数相加得的两数相加得0 0;一个数同一个数同0 0相加相加,仍得这个数。仍得这个数。有理数加法法则应用举例:有理数加法法则应用举例:同号相加:同号相加:异号相加异号相加与与0 0相加相加若若a a、b b互为
11、相反数,则互为相反数,则a+b=a+b=a a是任一个有理数,则是任一个有理数,则a+0=a+0=(-5)+(-3)=-8(+5)+(+3)=8(+5)+(+3)=85+(-3)=2-5+(+3)=-22)2)有理数减法法则有理数减法法则 减去一个数,等于加上这个数的相反数减去一个数,等于加上这个数的相反数.即即 a-b=a+(-b)a-b=a+(-b)例:分别求出数轴上两点间的距离:例:分别求出数轴上两点间的距离:表示表示2 2的点与表示的点与表示-7-7的点;的点;表示表示-3-3的点与表示的点与表示-1-1的点。的点。解:解:2-(-7)=2+7=92-(-7)=2+7=9 (或或-7-
12、2-7-2=-9-9=9)=9)-1-(-3)=-1+3=2-1-(-3)=-1+3=210.5210.25430.75410.2520.4530.6540.8510.125830.375850.625870.8758你都记住了吗?你都记住了吗?110.532.75542 614.38.14253492318.725.254213.653 化小数,还是化成分数进行计算简单 化小 化小+简算 直接算30.120.54203 3)有理数的乘法法则)有理数的乘法法则 两数相乘,同号得正,异号得负,两数相乘,同号得正,异号得负,并把绝对值相乘;并把绝对值相乘;任何数同任何数同0 0相乘,都得相乘,都得
13、0.0.几个不等于几个不等于0 0的数相乘,积的符号的数相乘,积的符号由负因数的个数决定,当负因数有奇由负因数的个数决定,当负因数有奇数个时,积为负;当负因数有偶数个数个时,积为负;当负因数有偶数个时,积为正时,积为正.几个数相乘,有一个因数为几个数相乘,有一个因数为0 0,积就为积就为0.0.同号相乘同号相乘 异号相乘异号相乘 数与数与0 0相乘相乘a a为任何有理数,则为任何有理数,则 a a0=0=0 0有理数乘法法则应用举例:有理数乘法法则应用举例:2 23=63=6 (-2)(-2)3=-63=-6(-2)(-2)(-3)=6(-3)=62 2(-3)=-6(-3)=-6 连乘连乘
14、(-2)(-2)(-3)(-3)(-4)(-4)=-24=-24(-2)(-2)3 3(-4)(-4)=24=244)4)有理数除法法则有理数除法法则除以一个数等于乘上这个数的倒数除以一个数等于乘上这个数的倒数;即即b1a ab=ab=a (b0)(b0)两数相除两数相除,同号得正同号得正,异号得负异号得负,并把绝对值相除并把绝对值相除;0 0除以任何一个不等于除以任何一个不等于0 0的数的数,都都得得0.0.2115 1199 31111432 5)5)有理数的乘方有理数的乘方 求求n n个相同因数的积的运算个相同因数的积的运算,叫做乘方。叫做乘方。an正数的任何次幂都是正数;正数的任何次幂
15、都是正数;负数的奇次幂是负数,负数的奇次幂是负数,负数的偶次幂是正数负数的偶次幂是正数.幂幂指数指数 底数底数 即aaa a=n n 个个an的平方是(9)平方是的数是()(1)232和(23)2有什么区别?各等于什么?(2)32和23有什么区别?各等于什么?(3)-34和(-3)4 4有什么区别?各等于什么?口答练习1)在 中,12是 数,10是 数,读作 ;2)的底数是 ,指数是 ,读作 ;7231012237的7次方23底指12的10次方 12的10次幂例:计算:23216232312633 3232下面的解题过程是否正确?如果有错误请加以订正。下面的解题过程是否正确?如果有错误请加以订
16、正。241123611296117671616 241123611296117671616 改正改正:2.2.运算顺序运算顺序1 1)有括号,先算括号里面的;)有括号,先算括号里面的;2 2)先算乘方,再算乘除,)先算乘方,再算乘除,最后算加减;最后算加减;3 3)对只含乘除,或只含加减的)对只含乘除,或只含加减的 运算,应从左往右运算。运算,应从左往右运算。2221213242433 2211210.6245 3.3.有理数的运算律有理数的运算律1)1)加法交换律加法交换律a+b=b+aa+b=b+a2)2)加法结合律加法结合律(a+b)+c=a+(b+c)(a+b)+c=a+(b+c)3)3)乘法交换律乘法交换律ab=baab=ba4)4)乘法结合律乘法结合律(ab)c=a(bc)(ab)c=a(bc)5)5)分分 配配 律律a(b+c)=ab+aca(b+c)=ab+ac解解 题题 技技 能能加法四结合加法四结合1.凑整结合法凑整结合法 2.同号结合法同号结合法3.两个相反数结合法两个相反数结合法4.同分母或易通分的分数结合法同分母或易通分的分数结合法A A、5.6+(-0.9)