《废水可生化性.docx》由会员分享,可在线阅读,更多相关《废水可生化性.docx(13页珍藏版)》请在第壹文秘上搜索。
1、废水可生化性废水生物处理是以废水中所含污染物作为营养源,利用微生物的代谢作用使污染物被降解、废水得以净化。显然,如果废水中的污染物不能被微生物降解,生物处理是无效的。如果废水中的污染物可被微生物降解,则在设计状态下废水可获得良好的处理效果。但是当废水中突然进入有毒物质,超过微生物的忍受限度时,将会对微生物产生抑制或毒害作用,使系统的运行遭到严重破坏。因此对废水成分的分析以及判断废水能否采用生物处理是设计废水生物处理工程的前提。所谓废水可生化性的实质是指废水中所含的污染物通过微生物的生命活动来改变污染物的化学结构,从而改变污染物的化学和物理性能所能达到的程度。研究污染物可生化性的目的在于了解污染
2、物质的分子结构能否在生物作用下分解到环境所允许的结构形态,以及是否有足够快的分解速度。所以对废水进行可生化性研究只研究可否采用生物处理,并不研究分解成什么产物,即使有机污染物被生物污泥吸附而去除也是可以的。因为在停留时间较短的处理设备中,某些物质来不及被分解。允许其随污泥进入消化池逐步分解。事实上,生物处理并不要求将有机物全部分解成Co2、H20和硝酸盐等,而只要求将水中污染物去除到环境所允许的程度。在分析污染物的可生化性时,还应注意以下几点。一些有机物在低浓度时毒性较小,可以被微生物所降解。但在浓度较高时厕表现出对微生物的强烈毒性,常见的酚、氧、苯等物质即是如此。如酚浓度在1%时是一种良好的
3、杀菌剂,但在300mgL以下,则可被经过驯化的微生物所降解。废水中常含有多种污染物,这些污染物在废水中混合后可能出现复合、聚合等现象,从而增大其抗降解性。有毒物质之间的混合往往会增大毒性作用,因此,对水质成分复杂的废水不能简单地以某种化合物的存在来判断废水生化处理的难易程度。所接种的微生物的种属是极为重要的影响因素。不同的微生物具有不同的酶诱导特性,在底物的诱导下,一些微生物可能产生相应的诱导酶,而有些微生物则不能,从而对底物的降解能力也就不同。目前废水处理技术已发展到采用特效菌种和变异菌处理有毒废水的阶段,对有毒物质的降解效率有了很大提高。PH值、水温、溶解氧、重金属离子等环境因素对微生物的
4、生长繁殖及污染物的存在形式有影响,因此,这些环境因素也间接地影响废水中有机污染物的可降解程度。判断可生化性的四种方法废水存在可生化性差异的主要原因在于废水所含的有机物中,除一些易被微生物分解、利用外,还含有一些不易被微生物降解、甚至对微生物的生长产生抑制作用,这些有机物质的生物降解性质以及在废水中的相对含量决定了该种废水采用生物法处理(通常指好氧生物处理)的可行性及难易程度。在特定情况下,废水的可生化性除了体现废水中有机污染物能否可以被利用以及被利用的程度外,还反映了处理过程中微生物对有机污染物的利用速度:一旦微生物的分解利用速度过慢,导致处理过程所需时间过长,在实际的废水工程中很难实现,因此
5、,一般也认为该种废水的可生化性不高。确定处理对象废水的可生化性,对于废水处理方法的选择、确定生化处理工段进水量、有机负荷等重要工艺参数具有重要的意义。国内外对于可生化性的判定方法根据采用的判定参数大致可以分为好氧呼吸参量法、微生物生理指标法、模拟实验法以及综合模型法等。Ol好氧呼吸参量法微生物对有机污染物的好氧降解过程中,除CoD、BoD等水质指标的变化外,同时伴随着02的消耗和C02的生成。好氧呼吸参量法是就是利用上述事实,通过测定COD、BOD等水质指标的变化以及呼吸代谢过程中的02或C02含量(或消耗、生成速率)的变化来确定某种有机污染物(或废水)可生化性的判定方法。根据所采用的水质指标
6、,主要可以分为:水质指标评价法、微生物呼吸曲线法、CO2生成量测定法。1.水质指标评价法B0D5C0DCr比值法是最经典、也是目前最为常用的一种评价废水可生化性的水质指标评价法。传统观点认为B0D5C0DCr,即B/C比值体现了废水中可生物降解的有机污染物占有机污染物总量的比例,从而可以用该值来评价废水在好氧条件下的微生物可降解性。在一般情况下,BOD5/COD值愈大,说明废水可生物处理性愈好。综合国内外的研究结果,可参照表:【废水可生化性评价参考数据】所列数据评价废水的可生化性。在各种有机污染指标中,总有机碳(ToC)、总需氧量(TOD)等指标与COD相比,能够更为快速地通过仪器测定,且测定
7、过程更加可靠,可以更加准确地反映出废水中有机污染物的含量。随着近几年来上述指标测定方法的发展、改进,国外多采用BOD/TOD及BOD/TOC的比值作为废水可生化性判定指标,并给出了一系列的标准。但无论BOD/COD、BOD/TOD或者BOD/TOCz方法的主要原理都是通过测定可生物降解的有机物(BOD)占总有机物(CoD、TOD或ToC)的比例来判定废水可生化性的。该种判定方法的主要优点在于:BOD.COD等水质指标的意义已被广泛了解和接受,且测定方法成熟,所需仪器简单。但该判定方法也存在明显不足,导致该种方法在应用过程中有较大的局限性。首先,BOD本身是一个经验参数,必须在严格一致的测试条件
8、下才能比较它们的重现性和可比性。测试条件的任何偏差都将导致极不稳定的测试结果,稀释过程、分析者的经验以及接种材料的变化都可以导致BOD测试的较大误差,同时,我们又很难找到一个标准接种材料来检验所接种的微生物究竟带来多大的误差,也不知道究竟哪一个测量值更接近于真值。实际上,不同实验室对同一水样的BOD测试的结果重现性很差,其原因可能在于稀释水的制备过程或不同实验室具体操作差异所带来的误差;其次,国内外学者对各类工业废水和城市污水的BOD与COD数值做了大量的测定工作,并确定了能表征两者相关性的关系式:COD=a+bBOD(1)式(1)中a=CODnB,b=CODBBOD;CoDnB一不能被生物降
9、解的那部分有机物的COD值;CODB-能被生物降解的那部分有机物的COD值。根据公式1可以看出,BoD/COD值不能表示可生物降解的有机物占全部有机物的比值,只有当a值为零时废水的B0D/C0D比值才是常数;最后,废水的某些性质也会使采用该种方法判定废水可生化性产生误差甚至得到相反的结论,如:BOD无法反映废水中有害有毒物质对于微生物的抑制作用,当废水中含有降解缓慢的有机污染物悬浮、胶体污染物时,BOD与COD之间不存在良好的相关性。在使用此法时,应注意以下几个问题(1)某些废水中含有的悬浮性有机固体容易在COD的测定中被重铭酸钾氧化,并以COD的形式表现出来。但在BOD反应瓶中受物理形态限制
10、,BoD数值较低,致使BoD5/C0D值减小,而实际上悬浮有机固体可通过生物絮凝作用去除,继之可经胞外酶水解后进入细胞内被氧化,其B0D5/C0D值虽小,可生物处理性却不差。(2)COD测定值中包含了废水中某些无机还原性物质(如硫化物、亚硫酸盐、亚硝酸盐、亚铁离子等)所消耗的氧量,B0D5测定值中也包括硫化物、亚硫酸盐、亚铁离子所消耗的氧量。但由于COD与B0D5测定方法不同,这些无机还原性物质在测定时的终态浓度及状态都不尽相同,亦即在两种测定方法中所消耗的氧量不同,从而直接影响B0D5和COD的测定值及其比值。(3)重铝酸钾在酸性条件下的氧化能力很强,在大多数情况下,COD值可近似代表废水中
11、全部有机物的含量。但有些化合物如叱碇不被重铭酸钾氧化,不能以COD的形式表现出需氧量,但却可能在微生物作用下被氧化以B0D5的形式表现出需氧量,因此对B0D5/C0D值产生很大影响。综上所述,废水的BoD5/C0D值不可能直接等于可生物降解的有机物占全部有机物的百分数,所以,用B0D5/C0D值来评价废水的生物处理可行件尽管方便,但比较粗糙,欲做出准确的结论,还应辅以生物处理的模型实验。2 .微生物呼吸曲线法微生物呼吸曲线是以时间为横坐标,以生化反应过程中的耗氧量为纵坐标作图得到的一条曲线,曲线特征主要取决于废水中有机物的性质。测定耗氧速度的仪器有瓦勃氏呼吸仪和电极式溶解氧测定仪。微生物内源呼
12、吸曲线:当微生物进入内源呼吸期时,耗氧速率恒定,耗氧量与时间呈正比,在微生物呼吸曲线图上表现为一条过坐标原点的直线,其斜率即表示内源呼吸时耗氧速率。如图1所示,比较微生物呼吸曲线与微生物内源呼吸曲线,曲线a位于微生物内源呼吸曲线上部,表明废水中的有机污染物能被微生物降解,耗氧速率大于内源呼吸时的耗氧速率,经一段时间曲线a与内源呼吸线几乎平行,表明基质的生物降解已基本完成,微生物进入内源呼吸阶段;曲线b与微生物内源呼吸曲线重合,表明废水中的有机污染物不能被微生物降解,但也未对微生物产生抑制作用,微生物维持内源呼吸;曲线C位于微生物内源呼吸曲线下端,耗氧速率小于内源呼吸时的耗氧速率,表明废水中的有
13、机污染物不能被微生物降解,而且对微生物具有抑制或毒害作用,微生物呼吸曲线一旦与横坐标重合,则说明微生物的呼吸已停止,死亡。将微生物呼吸曲线图的横坐标改为基质浓度,则变为另一种可生化性判定方法一耗氧曲线法,虽然图的含义不同,但是与微生物呼吸曲线法的原理和实验方法是一致的。该种判定方法与其他方法相比,操作简单、实验周期短,可以满足大批量数据的测定。但必须指出,用此种方法来评价废水的可生化性、必须对微生物的来源、浓度、驯化和有机污染物的浓度及反应时间等条件作严格的规定,加之测定所需的仪器在国内的普及率不高,因此在国内的应用并不广泛。3 .CO2生成量测定法微生物在降解污染物的过程中,在消耗废水中。2
14、的同时会生成相应数量的CO2o因此,通过测定生化反应过程C02的生成量,就可以判断污染物的可生物降解性。目前最常用的方法为斯特姆测定法,反应时间为28d,可以比较C02的实际产量和理论产量来判定废水的可生化性,也可以利用CO2DOC值来判定废水的可生化性。由于该种判定实验需采用特殊的仪器和方法,操作复杂,仅限于实验室研究使用,在实际生产中的应用还未见报道。02微生物生理指标法微生物与废水接触后,利用废水中的有机物作为碳源和能源进行新陈代谢,微生物生理指标法就是通过观察微生物新陈代谢过程中重要的生理生化指标的变化来判定该种废水的可生化性。目前可以作为判定依据的生理生化指标主要有:脱氢酶活性、三磷
15、酸腺昔(ATP)。1.脱氢酶活性指标法微生物对有机物的氧化分解是在各种酶的参与下完成的,其中脱氢酶起着重要的作用:催化氢从被氧化的物质转移到另一物质。由于脱氢酶对毒物的作用非常敏感,当有毒物存在时,它的活性(单位时间内活化氢的能力)下降。因此,可以利用脱氢酶活性作为评价微生物分解污染物能力的指标:如果在以某种废水(有机污染物)为基质的培养液中生长的微生物脱氢酶的活性增加,则表明微生物能够降解该种废水(有机污染物)。2.三磷酸腺昔(ATP)指标法微生物对污染物的氧化降解过程,实际上是能量代谢过程,微生物产能能力的大小直接反映其活性的高低。三磷酸腺昔(ATP)是微生物细胞中贮存能量的物质,因而可通
16、过测定细胞中ATP的水平来反映微生物的活性程度,并作为评价微生物降解有机污染物能力的指标,如果在以某种废水(有机污染物)为基质的培养液中生长的微生物ATP的活性增加,则表明微生物能够降解该种废水(有机污染物)。此外,微生物生理指标法还有细菌标准平板计数、DNA测定法、INT测定法、发光细菌光强测定法等。虽然目前脱氢酶活性、ATP等测定都已有较成熟的方法,但由于这些参数的测定对仪器和药品的要求较高,操作也较复杂,因此目前微生物生理指标法主要还是用于单一有机污染物的生物可降解性和生态毒性的判定。03模拟实验法模拟实验法是指直接通过模拟实际废水处理过程来判断废水生物处理可行性的方法。根据模拟过程与实际过程的近似程度,可以大致分为培养液测定法和模拟生化反应器法。1.培养液测定法培养液测定法又称摇床试验法,具体操作方法是:在一系列三角瓶内装入