若干经典孤子方程的解、对称及代数结构研究.docx

上传人:p** 文档编号:624643 上传时间:2023-12-10 格式:DOCX 页数:1 大小:14.23KB
下载 相关 举报
若干经典孤子方程的解、对称及代数结构研究.docx_第1页
第1页 / 共1页
亲,该文档总共1页,全部预览完了,如果喜欢就下载吧!
资源描述

《若干经典孤子方程的解、对称及代数结构研究.docx》由会员分享,可在线阅读,更多相关《若干经典孤子方程的解、对称及代数结构研究.docx(1页珍藏版)》请在第壹文秘上搜索。

1、若干经典孤子方程的解、对称及代数结构研究(1)借助中心差分思想首次构造出半离散AKNS系统,利用连续极限理论将半离散和连续系统成功地联系起来,为其它的离散系统和连续系统之间建立联系指出了更清晰明确的方向;(2)求解半离散可积方程的精确解,加深了对半离散可积系统在理论上的认识,并为这些半离散可积系统在光学研究中的进一步应用提供数学支持,而其中对非等谱方程的求解,相对于等谱方程而言,更加困难繁琐,但其结果也更具有一般性;(3)获得一个新的有限维可积超对称Hamilton可积系统,新系统的LaX表示和r矩阵被提出,建立了该类超可积孤子方程的超Hamilton形式,相关结果不仅对已知超可积模型具有重要

2、意义,也有助于对与之相关的超可积模型的研究;(4)新建了peakon和kink解的新可积系统,取得一系列重要进展,构造出多组份可积(差分)方程并研究它们的性质,丰富了全离散可积系统的研究对象;(5)通过对Sine-GOrdon方程位势的约束发现,双线性方法不仅可以应用于求解孤子方程族,也可以用来求解非线性常微分方程族,将双线性方法应用到有限维Hamilton系统,对于研究Hamilton系统的Liouville可积性,及对该系统的解进行定性分析具有着积极的意义;(7)异于Hirota双线性算子,广义双线性算子的定义更为广泛,我们较早地利用广义双线性算子构造出了更多的孤子可积方程,这既是对经典方法的补充与推广,也是对孤子可积理论的进一步丰富。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 论文 > 毕业论文

copyright@ 2008-2023 1wenmi网站版权所有

经营许可证编号:宁ICP备2022001189号-1

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。第壹文秘仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知第壹文秘网,我们立即给予删除!