《影像组学在颅内动脉瘤中的应用研究进展2023.docx》由会员分享,可在线阅读,更多相关《影像组学在颅内动脉瘤中的应用研究进展2023.docx(14页珍藏版)》请在第壹文秘上搜索。
1、影像组学在颅内动脉瘤中的应用研究进展2023摘要:颅内动脉瘤是常见的脑血管疾病,发病率高,破裂后致死、致残率高,准确评估其破裂风险至关重要。影像组学基于影像图像高通量提取大量定量特征,在颅内动脉瘤特别是风险分层方面展现出巨大应用潜力o影像组学结合机器学习算法尤其是深度学习有望提升颅内动脉瘤稳定性评估的效能,提高临床工作效率。现对影像组学在颅内动脉瘤中的应用研究进展进行综述,为动脉瘤的个体化分层和管理提供参考。颅内动脉瘤是常见的公共卫生疾病,准确评估其破裂风险至关重要。影像组学作为一个新兴的研究领域,可利用计算机从影像图像中提取和分析大量定量特征,以反映疾病潜在的病理生理变化,在疾病的检测、诊断
2、及疗效评估等方面,特别是在肿瘤领域显示出巨大的应用价值1o近年来,该技术开始应用于颅内动脉瘤的研究并展现出独特优势,但仍处于起步阶段,需要进一步探索。现就影像组学在颅内动脉瘤中的应用进展进行综述,拟为动脉瘤患者的分层管理提供参考。1颅内动脉瘤的风险评估现状颅内动脉瘤是因血管壁结构改变引起的血管壁病理性膨出或扩张。全球范围内,大约有3.2%的人患有颅内动脉瘤2,在中国3575岁的人群中,其发病率高达7%3。颅内动脉瘤每年的破裂率为1.4%,5年破裂风险为3.4%4。对未破裂颅内动脉瘤进行观察随访成为大部分患者的首要选择。然而,并非所有未破裂颅内动脉瘤患者均适合随访。Huang等报道称,无症状性颅
3、内动脉瘤的老年(65岁)患者,在符合保守治疗条件时,不需要过于频繁的随访;而对于多发颅内动脉瘤或存在子囊者,密切的随访可能更有价值。大多数未破裂颅内动脉瘤患者无明显症状,但动脉瘤一旦破裂,可能面临灾难性后果。动脉瘤破裂患者在破裂后30d内死亡的概率高达35%,幸存者中约三分之一需要全面护理,同时还有三分之一无法返回工作岗位6,严重损害公众健康及生活质量。通过血管内介入或神经外科手术预防性治疗颅内动脉瘤可以降低动脉瘤破裂的风险,但同时也伴随着治疗相关并发症发生的风险。一项Meta分析显示接受血管内介入治疗的未破裂颅内动脉瘤患者术中及术后30d内总并发症发生风险为4.96%(95%CI:4.00%
4、6.12%),病死率为0.30%(95%CLO.20%0.40%);而接受神经外科治疗者手术期间及术后30d内总并发症发生风险为8.34%(95%CI:6.25%11.10%),病死率为0.10%(95%CI:00.20%)7.因此,对颅内动脉瘤进行风险分层具有重要意义。如何平衡颅内动脉瘤自然破裂与发生治疗并发症的风险,并识别高危患者一直是临床上的难题。过去的研究进行了大量探索,如建立综合了人口种族(P)、高血压病(三)、年龄(八)、动脉瘤大小(三)、其他动脉瘤的既往蛛网膜下腔出血史(E)及动脉瘤部位几大因素的PHASES评分系统,用于评估动脉瘤5年的破裂风险涵盖了早期蛛网膜下腔出血病史(E)
5、、动脉瘤位置(L)、年龄(八)、人口种族(P)、动脉瘤大小和形状(三)这6个预测因子的ELAPSS评分系统,以预测3年和5年动脉瘤生长的风险8;未破裂颅内动脉瘤研究的评分系统以评估其3年破裂的风险9;未破裂颅内动脉瘤治疗评分系统用于指导临床决策10。这些评分系统为动脉瘤的风险评估提供了一定参考,但预测效能有限口13,且评分系统多基于常规临床信息和动脉瘤形态学特征建立,无法详细描述病灶。血流动力学与颅内动脉瘤的生长和破裂显著相关14-15,但其依靠计算机流体力学虚拟重组,计算参数繁多且复杂,难以准确模拟血液的黏度和血管壁弹性,与血流的真实情况存在一定偏差,应用范围有限。相较而言,形态学参数可直接
6、反映瘤体特征,简便且适用范围广。然而,传统的形态学特征多基于二维手动测量,可能存在观察者之间的差异,难以全面量化整个动脉瘤的特征。尽管一些三维形态学参数如非球面指数、椭圆形指数和波动指数等已用于描述动脉瘤形状的凹凸程度16-17,但这些参数的计算较复杂,应用受限。此外,部分动脉瘤在细胞或分子水平上可能是不稳定的,但无明显的形态学变化证据。因此,需探索能分析大量卢页内动脉瘤信息的新技术以进一步研究。2影像组学概述影像组学是从医学图像中高通量提取大量定量特征的过程,最早由Lambin等18于2012年提出。与传统的医学图像相比,其具有通量大、定量、计算速度快、精度高等优点,不仅可评估病变的形态特征
7、,还可以反映图像的强度分布及空间关系、纹理异质性等。基于特定的软件平台(如PyRadiOmiCS)进行特征提取,有助于提高研究结果的准确性和可重复性。影像组学的基本过程主要包括图像采集、图像重组和预处理、感兴趣区域分割、特征提取和分析几个步骤。其中,感兴趣区域分割是关键,分为手动、半自动和全自动分割。手动分割相对简单,但主观且耗时,病灶边界的确定可能受观察者经验的影响。目前,颅内囊状未破裂动脉瘤MRI影像标注专家共识19为病灶区域的规范标注提供了参考,可减少观察者间的异质性。计算机辅助的半自动分割具有可重复性高、时效性好、接受度高的特点,而全自动分割则有省时、可重复性高和高效率的优势,但目前尚
8、缺乏统一的规范化标准。3影像组学在颅内动脉瘤稳定性评估中的应用具有明显的临床症状或随访期间出现生长的颅内动脉瘤破裂风险通常更高20-21,属于不稳定动脉瘤。DSA、CT血管成像(CTA)和MR血管成像(MRA)等影像检查,可获取动脉瘤的形态特征、血管壁强化情况等信息,辅助预测动脉瘤的破裂风险,但涵盖的信息相对有限。相比之下,影像组学可为医师提供更全面、精准的信息实现动脉瘤整体的评估,弥补了前者的不足o目前其在颅内动脉瘤中的研究以基于DSA和CTA图像的风险预测为主,虽然这一领域还在不断发展,但已取得了初步成效。3.1基于DSA的颅内动脉瘤稳定性评估DSA是诊断颅内动脉瘤的金标准。近年来,多项基
9、于DSA图像的影像组学的研究为颅内动脉瘤风险分层提供了丰富的信息。LiU等22从579例颅内动脉瘤患者的DSA图像中提取了12个影像组学特征。该研究表明,相较于侧壁动脉瘤,分叉动脉瘤的破裂风险更高45.9%(168/366)比13.6%(48/353),PO.OIL并且分叉结构是动脉瘤破裂的独立危险因素(C)R=3.007,95%CI:1.7525.248,P0.01)。此外,动脉瘤的影像组学特征中,平坦度和致密度2是分叉动脉瘤破裂的重要影响因素,而伸长率和球形不对称度为影响侧壁动脉瘤破裂的关键影像组学特征。随后,Liu等23进一步纳入124个不稳定白页内动脉瘤和296个稳定颅内动脉瘤。不稳定
10、颅内动脉瘤指发病至确诊破裂不超过1个月的破裂动脉瘤,以及连续随访中出现生长或伴有压迫性症状的未破裂动脉瘤。这项研究使用PyRadiomics自动提取基于DSA图像的影像组学形态特征。结果表明,预测动脉瘤不稳定表现最佳的特征为动脉瘤的平坦度,其受试者工作特征曲线下面积(areaundertheCUrVe,AUC)为0.753(95%CLO.7020.804),其次是球形不对称度、瘤体的最大二维直径(切片)及表面积。此外,研究还表明,有高血压病者的不稳定动脉瘤通常形态更不规则,同时证明了机器学习用于预测动脉瘤稳定性的可行性。该研究首次在动脉瘤的影像组学研究中囊括了多种动脉瘤不稳定的类别,重点关注最
11、大三维直径为48mm的小动脉瘤,更贴近临床诊疗实际。然而,不稳定动脉瘤中破裂者占比86.3%,可能影响模型的准确性和适用范围。据Skodvin等24研究显示,颅内动脉瘤破裂后的形态会发生改变,不能替代破裂前的形态。LiU等25进一步研究发现,基于临床特征、动脉瘤位置和影像组学特征(包括表面积体积比和平坦度)联合构建的列线图预测颅内动脉瘤破裂风险的性能优于PHASES评分训练集AUC:O.838(95%CI:O.799O.877)比O.684(95%CL0.637O.731);测试集AUC:O.837(95%CI:O.7800.894)比0.657(95%CLO.5850.729),均P0.01
12、,决策曲线分析结果显示,列线图指导临床决策的净收益高于PHASES评分。该研究还表明,列线图预测结果与实际的动脉瘤破裂状态高度一致(训练集和验证集的P值分别为0.669、0.803)。此外,列线图与PHASES评分之间存在密切的正相关关系训练集和测试集中相关系数分另!为0.532(95%CI:0.4530.602)、0.543(95%CI:0.4190.649)z均P0.01,在不同的PHASES评分亚组中冽线图预测的破裂风险随着PHASES评分升高而升高,组间两两比较差异均有统计学意义(均P0.05)Ludwig等26分析了353个颅内动脉瘤的三维DSA图像,从中自动提取13个传统形态学和1
13、3个影像组学特征分别建模,并对比它们预测动脉瘤破裂风险的能力。结果表明,影像组学中伸长率(AUC:0.71,P0.01)和平坦度(AUC:0.72zP0.01)预测动脉瘤破裂的表现最佳,且二者之间存在相关性(R2=0.75,P0.01)。但整体上,影像组学特征的预测性能不如传统的形态学特征。该研究自动提取动脉瘤形态学特征,减少了手动测量的偏差。但是,该研究未设置验证集,未比较影像组学联合传统形态学特征预测动脉瘤破裂风险的效能,需进一步探索。在既往的研究基础上,Lauric等27使用增强的影像组学方法充分考虑了颅内动脉瘤的空间方位,通过瘤颈定位和流入血管直径的估计,分析了5个影像组学衍生特征。这
14、些特征包括瘤颈平面上的最大垂直高度、瘤体的最大二维直径(切片)、瘤颈平面上的最大垂直高度/瘤体的最大二维直径(切片)、瘤颈平面上的最大垂直高度/流入血管的直径、瘤体的最大三维直径/流入血管的直径。研究结果显示,增强的影像组学可有效区分侧壁或分叉动脉瘤的破裂风险,其预测性能优于常规的影像组学(侧壁AUC0.85比0.82;分叉AUC:0.78比0.74),并与传统形态学特征的预测能力相当甚至略好(侧壁AUC:0.85比0.86;分叉AUCO.78比0.76)oTong等28纳入来自3个医疗机构的105例蛛网膜下腔出血患者的254个多发颅内动脉瘤。研究结果表明,使用影像组学评分预测颅内动脉瘤破裂的
15、性能优于传统的形态学模型训练集AUCO.814(95%CLO.7460.881)比O747(95%CL0.6730.822),验证集AUCO835(95%CI:0.7390.930)比0.666(95%CLO.5390.793)。其中,平坦度是最重要的鉴别特征,其加权系数最大(约10.06)。将影像组学评分与传统的形态学特征联合建模时,鉴别能力显著提高训练集AUC:0.842(95%CI:0.7860.899),验证集AUeO849(95%CE0.7520.946)。该研究因使用自身对照而克服了患者个体差异的影响。然而,基于颅内动脉瘤破裂后形态的分析可能无法完全反映破裂前动脉瘤的形态,此外手动
16、测量可能存在偏差。总之,DSA在颅内动脉瘤风险评估中有明显优势,可提供精细的血管解剖结构,特别适用于直径小和复杂的动脉瘤。然而QSA作为一种侵入性检查,辐射剂量大、耗时、价格高昂、存在潜在并发症风险等可能限制其在临床的应用范围,较少用于动脉瘤的随访观察。3.2基于CTA的颅内动脉瘤稳定性评估CTA是一种准确、无创、高效且经济的检查方式,常作为疑似颅内动脉瘤或动脉瘤破裂后患者的常规检查。AIWalid等29在393例单发颅内动脉瘤患者中使用CTA影像组学特征对动脉瘤破裂状态进行分类,结果显示性能良好训I练集AUC:O.92(95%CLO.890.95),测试集AUCO.86(95%CLO.800,93)。然而,该研究的数据来自2个医疗机构的4台扫描机器,存在异质性。OU等30分析了122个颅内动脉瘤(29个破裂)的CTA