《学案空间向量及其运算.docx》由会员分享,可在线阅读,更多相关《学案空间向量及其运算.docx(16页珍藏版)》请在第壹文秘上搜索。
1、空间向量及其运算【学习目标】1 .经历向量及其运算由平面向空间推广的过程,了解空间向量、向量的模、零向量、相反向量、相等向量等的概念;2 .掌握空间向量的运算;加减、数乘、数量积;3 .能运用向量运算判断向量的共线与垂直。【学习重难点】重点:理解空间向量的概念难点:掌握空间向量的运算及其应用【知识梳理】一、温故知新1.平面向量的概念名称定义备注向量既有又有的量。向量的大小叫做向量的长度或模平面向量是自由向量零向量C长度等于O的向量,其方向是任意的记作O单位向量长一度等于1个单位的向量与非零向量共线的单位向量为一平行向量(或共线向量)方向的向量O与任一向量平行(或共线)相等向量长度且方向的向量两
2、向量只有相等或不等,不能比大小相反向量长度且方向的向量O的相反向量为4 .向量的线性运算(1)加法:是指求两个向量和的运算;法则(几何意义):三角形法则、平行四边形法则。(2)减法:是指求与人的相反向量的和的运算叫做。与力的差;法则(几何意义):三角形法则。(3)数乘:是指求实数;I与向量的积的运算;法则(几何意义):|而|=|附1。1;当元X)时,羽与的方向;当4存在实数4,使得况=冗加+能且丸+4=1。7 .两个向量的夹角(1)定义:一直两个非零向量a,b,作)=a,OB=bf则NAOB=夕做a与b的夹角。(2)范围:夹角6的取值范围是o当a与b同向时,=;反向时,=;当a与b垂直时,=,
3、并记作8 .两向量的夹角分别是锐角与钝角的充要条件(I)Q与b的夹角是锐角Qa妨_0且Q与不共线;(2) a与b的夹角是钝角端功0且Q与不共线。9 .平面向量的数量积(1)定义:ah=规定OS=;(2)坐标表示:ab=,其中a=(x,y),b=(x2,y2);(3)运算律交换律:cb=;结合律(a+c)b=;数乘:(a)b=o(4)在b方向上的投影是;(5)力几何意义:数量积必等于的。模同与b在的0方向上的投影的乘积。8.向量数量积的性质设Q,b都是非零向量,是与b方向相同的单位向量,是Q与e的夹角,则(1)ea=;(2)aA-b;(3)aa=;(4)S。也可记作A3,其模记为O(2)几类特殊
4、的空间向量名称定义及表示零向量规定长度为O的向量叫,记为O单位向量的向量叫单位向量相反向量与向量。长度而方向的向量,称为。的相反向量,记为S相等向量方向且模的向量称为相等向量,且的有向线段表示同一向量或相等向量知识点二空间向量的加减运算及运算律思考2.下面给出了两个空间向量。、Ih作出b+a,b-A,(1)类似于平面向量,可以定义空间向量的加法和减法运算。OaAOB=OA+AB=a+bCA=OA-OC=a-bOB=OA+AB=OA+OC=a+b(2)空间向量加法交换律a+b=b+a空间向量加法结合律(+b)+c=a+(b+c)知识点三空间向量的数乘运算思考3.实数2和空间向量Q的乘积瓶的意义是
5、什么?向量的数乘运算满足哪些运算律?(1)实数与向量的积与平面向量一样,实数与空间向量G的乘积瓶仍然是一个向量,称为向量的数乘运算,记作觞,其长度和方向规定如下:以=o当0时与向量a方向相同;当存在有序实数对(x,y),使AP对空间任一点。,有。尸二OA+做一做1.如图,已知长方体ABCD-A1BfCfD1f化简下列向量表达式,并在图中标出化简结果的向量。(1)AAf-CB;(2)AA,+AB+B,c,o例1.已知平行四边形ABCQ从平面AC外一点。引向量。OE=kOA,OF=kOB,OG=kOC,OH=kOD.求证:四点E,F,G,H共面变式训练L对于空间任意一点。和不共线的三点A,B,C,
6、有如下关系:60P=OA+20B+3OC,则()A.四点O,A,B,C必共面B.四点P,A,B,C必共面C.四点0,P,B,C必共面D.五点0,P,A,B,C必共面知识点五空间向量数量积的概念思考5.如图所示,在空间四边形OABC中,OA=8,AB=6,AC=4fBC=5,ZOAC=45,NOAB=60。,类比平面向量有关运算,如何求向量。4与BC的数量积?并总结求两个向量数量(1)定义:已知两个非零向量。,b,则IaIIblCOS(I)方向;大小;长度;模;长度;闷或IABl(2)零向量;模为1;相等;相反;相同;相等;同向;等长知识点二空间向量的加减运算及运算律思考2.答案如图,空间中的两
7、个向量mb相加时,我们可以先把向量平移到同一-个平面a内,以任意点。为起点作。A=0,OB=b,则。C=OA+08=+b,AB=OB-OA=b-A.知识点三空间向量的数乘运算思考3.答案20时,加和。方向相同;AVO时,相和Q方向相反;曲的长度是。的长度的囚倍。空间向量的数乘运算满足分配律及结合律:分配律:(.a+b)=a+b,结合律:Ca)=Cy)A,(1)相反;IAIla|;(2)()a;a+b;ya+2a知识点四共线向量与共面向量思考4.答案如果表示空间向量的有向线段所在的直线互相平行或重合,那么这些向量叫做共线向量或平行向量。平行或重合;a-b方向向量;。尸二OA+S;AB惟一;p=xa-yb;xAB+yAC;xAB+yAC做一做1.解(1)AA,-CB=AA,-DA=AA,+AD=AD,.-(2)V+A8+夕C=CAA,+AB)+B,C,=AB,+B,C,=AC,0向量AAC如图所示。【分析】(1)可画出图形,OE=kOAf丽=欠丽便可得至IJ更=,从而得出