极坐标与参数方程题型和方法归纳.docx

上传人:p** 文档编号:892681 上传时间:2024-03-30 格式:DOCX 页数:4 大小:35.63KB
下载 相关 举报
极坐标与参数方程题型和方法归纳.docx_第1页
第1页 / 共4页
极坐标与参数方程题型和方法归纳.docx_第2页
第2页 / 共4页
极坐标与参数方程题型和方法归纳.docx_第3页
第3页 / 共4页
极坐标与参数方程题型和方法归纳.docx_第4页
第4页 / 共4页
亲,该文档总共4页,全部预览完了,如果喜欢就下载吧!
资源描述

《极坐标与参数方程题型和方法归纳.docx》由会员分享,可在线阅读,更多相关《极坐标与参数方程题型和方法归纳.docx(4页珍藏版)》请在第壹文秘上搜索。

1、极坐标与参数方程题型和方法归纳题型一:极坐标(方程)与直角坐标(方程的相互转化,参数方程与普通方程相互转化,极坐标方程与参数方程相互转化。方法如下:11X=IH11、直线/的参数方程为J2为参数)以坐标原点。为极点,以X轴正半轴为极轴,建立y=G+i极坐标系,曲线C的方程为Sine-岛cos?。=。.(I)求曲线C的直角坐标方程;(II)写出直线/与曲线C交点的一个极坐标.题型二:三个常用的参数方程及其应用x=a+rcos公加2八(。为参数)(1)圆-切-二厂的参数方程是:y=b+rsmJW+=(0080,3:篙S为参数)(2)椭圆。”的参数方程是:U-smx=x0+/8sa(,为参数)过定点

2、Pcwo)倾斜角为的直线/的标准参数方程为:)=%+Sma对(3)注意:P点所对应的参数为r0=0,记直线/上任意两点AB所对应的参数分别为小弓,那么IM+1PAHM+1止心十小。IABl=MT2,p1-r2120)以坐标原点。为极点,=2sinZ以X轴正半轴为极轴,建立极坐标系,直线/的极坐标方程为PCOS(6+?)=-2立.(I)设尸是曲线。上的一个动点,当=2时,求点P到直线/的距离的最小值;(三)假设曲线C上的所有点均在直线/的右下方,求的取值范围.X=12cos3、曲线C:(参数eR),以坐标原点。为极点,X轴的非负半轴为极轴,建立极坐y=4sin6标系,曲线C2的极坐标方程为P=:

3、,点Q的极坐标为(4&,工).cos(9+-)4(1)将曲线C2的极坐标方程化为直角坐标方程,并求出点。的直角坐标;(2)设尸为曲线上的点,求PQ中点M到曲线G上的点的距离的最小值4、直线/:3为参数),曲线C”X = cos J = Sine为参数).(1)设/与G相交于两点A3,求IAB|;(2)假设把曲线G上各点的横坐标压缩为原来的倍,纵坐标压缩为原来的立倍,得到曲线C,设22点P是曲线G上的一个动点,求它到直线/的距离的最小值.5、在平面直角坐标系Xoy中,曲线cj=6cos=为参数),在以坐标原点。为极点,以X轴y=sincr正半轴为极轴建立的极坐标系中,直线/的极坐标方程为qpco

4、s(e+?)=-l.(1)求曲线C的普通方程和直线/的直角坐标方程;(2)过点”(-1,0)且与直线/平行的直线交C于A,3两点,求弦AB的长.6、面直角坐标系中,曲线C的参数方程为卜。为参数).以坐标原点。为极点,牙轴正半y=sna轴为极轴建立极坐标系,直线/的极坐标方程为QCOs(6+)=2.,与C交于4、B两点.(I)求曲线。的普通方程及直线/的直角坐标方程;11(II)设点HO,-2),求:PA+PB,两阀,附IpbL(三)IabI题型三:过极点射线极坐标方程的应用TFTF出现形如:(1)射线OP:=-p0);(1)直线OP:=-(pR)667、在直角坐标系Xay中,圆C的方程为(X-

5、上)2+(y+l)2=9,以。为极点,X轴的非负半轴为极轴建立极坐标系.(1)求圆C的极坐标方程;(2)直线OP:6=(PWR)与圆C交于点M、N,求线段MN的长.6fx=5cosa8、在直角坐标系XOy中,圆C的参数方程为.(为参数),以坐标原点为极点,X轴y=-6+5sina正半轴为极轴建立极坐标系.(1)求圆C的极坐标方程;(2)直线/的极坐标方程为。二%,其中Qo满足tan4=与C交于A,3两点,求M目的值.9、在直角坐标系KS,中,直线/经过点P(-1,O),其倾斜角为二,以原点。为极点,以X轴非负半轴为极轴,与直角坐标系XOy取相同的长度单位,建立极坐标系,设曲线C的极坐标方程为夕

6、2-6PCOSe+5=O.(I)假设直线/与曲线C有公共点,求a的取值范围;(II)设M(X,y)为曲线C上任意一点,求x+y的取值范围.(2石、fx=cos10、在直角坐标系中XOy中,曲线E经过点尸1,*,其参数方程为L.为参数),Ik3Jy=2sina以原点。为极点,X轴的正半轴为极轴建立极坐标系.(1)求曲线七的极坐标方程;X = COS(P、y = l + sinfi)(2)假设直线/交E于点A、B,ROAA.OB,求证:JT+J下为定值,并求出这个定值.IoAi-OB11、在平面直角坐标系Xoy中,曲线G和C,的参数方程分别是I=是参数)和y=4f(为参数).以原点。为极点,X轴的正半轴为极轴建立极坐标系.(1)求曲线G的普通方程和曲线C2的极坐标方程;7TT(2)射线。M:6=Bat二,一)与曲线C的交点为。,P,与曲线C2的交点为0,。,求IOPl0Q的最大值.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高等教育 > 微积分

copyright@ 2008-2023 1wenmi网站版权所有

经营许可证编号:宁ICP备2022001189号-1

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。第壹文秘仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知第壹文秘网,我们立即给予删除!