船舶动力与传动装置振动控制技术发展研究.docx

上传人:p** 文档编号:961691 上传时间:2024-06-05 格式:DOCX 页数:20 大小:137.38KB
下载 相关 举报
船舶动力与传动装置振动控制技术发展研究.docx_第1页
第1页 / 共20页
船舶动力与传动装置振动控制技术发展研究.docx_第2页
第2页 / 共20页
船舶动力与传动装置振动控制技术发展研究.docx_第3页
第3页 / 共20页
船舶动力与传动装置振动控制技术发展研究.docx_第4页
第4页 / 共20页
船舶动力与传动装置振动控制技术发展研究.docx_第5页
第5页 / 共20页
船舶动力与传动装置振动控制技术发展研究.docx_第6页
第6页 / 共20页
船舶动力与传动装置振动控制技术发展研究.docx_第7页
第7页 / 共20页
船舶动力与传动装置振动控制技术发展研究.docx_第8页
第8页 / 共20页
船舶动力与传动装置振动控制技术发展研究.docx_第9页
第9页 / 共20页
船舶动力与传动装置振动控制技术发展研究.docx_第10页
第10页 / 共20页
亲,该文档总共20页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

《船舶动力与传动装置振动控制技术发展研究.docx》由会员分享,可在线阅读,更多相关《船舶动力与传动装置振动控制技术发展研究.docx(20页珍藏版)》请在第壹文秘上搜索。

1、一、前言21世纪是人类开发海洋各类资源、利用海洋战略空间的新阶段,海洋在促进经济社会发展、保障国家总体安全等方面的地位更加突出。在加快建设海洋强国的背景下,推进海洋运载装备高技术发展迫在眉睫;其中,船舶水下辐射噪声直接关系到船舶声学性能、海洋环境保护、绿色船舶发展水平,相应的船舶低噪声推进技术一直是重点需求和难点问题。提升船舶低噪声推进技术,对海洋运载装备发展起到重要的推动作用。船舶推进系统在运转过程中不可避免地产生振动,如船舶主机运转产生的激励力、螺旋桨在舰部伴流场中运转产生的脉动力等。这些激励通过安装基座、轴承及其支承等传递至船体结构,进而诱发船体结构振动,引起水下低频辐射噪声。例如,在振

2、动声辐射方面,船舶动力与传动装置是直接驱动主轴和螺旋桨的动力来源,运转过程中产生的振动通过基座传递至船体,激发船体产生振动并向水下辐射噪声。一直以来,船舶水下辐射噪声中由动力与传动装置运转引起的船体振动声辐射不可忽略,对于大型水面船舶而言更显突出。因此,研究船舶动力与传动装置高性能减振降噪技术方案显得重要而迫切。已有的船舶动力与传动装置振动控制技术研究,集中在动力装置或传动装置功能性总体制造技术层面,而未就船舶装备中的动力与传动装置振动控制技术发展课题开展系统性探讨。目前我国虽然在船舶动力与传动装置振动控制方向的基础与应用研究方面取得了一定进展,但在船舶推进系统振动噪声机理、振动传递路径控制等

3、方面仍处于探索阶段,未能实现完全掌握与全面应用,整体技术水平距离世界先进尚有差距;船舶动力与传动装置振动控制技术发展规划、产业发展研究等也有待深化开展。针对于此,本文以船舶动力与传动装置引起的振动声辐射控制为重点,阐述相关振动控制技术的理论研究及工程应用背景,系统梳理技术发展与应用现状并凝练技术发展趋势,进而从基础理论、装置产品、科研能力等方面提出发展建议,以期为船舶动力与传动装置振动控制技术发展提供基础性和先导性参考。二、动力与传动装置振动控制技术理论研究及工程应用的基本背景(一)动力与传动装置功率不断增加,振动引起的辐射噪声不容忽视船舶动力装置主要分为柴油机动力、燃气轮机动力、蒸汽轮机动力

4、、电机动力、核动力等形式。对于目前的大、中型船舶而言,燃气轮机动力装置因其单机功率大、体积小、质量轻、启动加速快等优点获得广泛应用。船舶传动装置一般由齿轮箱、离合器、联轴器等传动部件按动力装置的不同配置组合而成,是船-机-桨匹配的纽带。传动装置将动力装置输出的功率传递至轴系并由螺旋桨实现推进,同时对动力涡轮输出进行减速以匹配动力装置与螺旋桨的扭矩-转速;对于主推力轴承置于齿轮箱内的布置方式,传动装置还需承受螺旋桨的推力。随着大型船舶排水量的增加,动力与传动装置功率不断增大,单机功率为数万千瓦,振动量级超过IlOdB,由此引起的船体振动和噪声愈发明显。近年来,随着燃气轮机、柴油机、齿轮箱等动力与

5、传动装置制造技术的进步,振动和噪声水平己有降低;但未来主流应用的高航速、大功率船舶,其动力与传动装置振动引起的辐射噪声问题依然不容忽视。(二)动力与传动装置激励特性及振动传递路径复杂,实施控制难度较大船舶动力与传动装置的振源及传递路径极为复杂(见图1),激励源涉及固、流、声、热、电磁等多物理场,实施振动控制难度较大。以柴油机为主动力的系统振源主要包括:运动部件惯性力导致的不平衡力和力矩,其激励幅值和频率取决于转速、运动部件质量、缸数、发火顺序、冲程数、活塞行程等;(2)气缸内油气燃烧后产生气体压力与往复惯性力合成后导致的倾覆力矩,其激励幅值和频率取决于转速、缸数、冲程数、活塞行程、缸径、工作压

6、力等。由此导致的柴油机体振动,通过基座传递至船体结构。图1船舶动力与传动装置引起的水HlS射噪声示意图以燃气轮机为主动力的系统,因回转机械属性而具有较小的振动水平,其振源主要包括:转子残余不平衡激励,由材料、结构、制造、装配方面的缺陷以及热变形导致,其激励频率表现为随转速变化的倍数轴频;(2)气动激励,由高温高压气体与静子/转子叶片强烈作用引起,与结构振动相耦合,具有显著非线性特征,会引起结构动力学特性强烈变化;声学激励,因转静干涉等效应产生的非定常压力脉动,具有宽频随机特性,通常与气动激励耦合共同作用。这些振源引起的燃气轮机转子、支承、箱体、基座的结构振动,亦会激励船体引起船体振动声辐射。传

7、动装置激励主要来源于传动齿轮的啮合激励。传动齿轮在啮合过程中存在时变刚度、啮合冲击、齿面误差等引起的动态激励,通过轴承、支承、齿轮箱体传递至船体,主要表现为与齿数、转速相关的啮合频率。此外,在动力与传动装置的附属部件中,管道作为传输流体介质的关键环节,其振动亦可通过支承传递至船体。管道振动一部分由设备结构振动直接引起,另一部分则由管道内的介质流动引起,也可能伴随有热场效应。三、国内外动力与传动装置振动控制技术发展与应用现状以降低船舶舰部水下辐射噪声为目的,针对船舶动力与传动装置振动控制难题,设计阶段的结构动力学优化是基础与根本解决方法。然而,在目前以功能为主的设计规范约束下,很多部件结构优化的

8、余地较小,难以通过结构动力学优化设计达到振动控制的目的,故振源控制、被动控制、主动控制等行之有效的方法逐渐成为研究重点。(一)动力学优化设计基于结构动力学原理对船舶动力与传动装置结构设计进行优化调整,可在不附加任何子系统的前提下,利用结构参数、形状及频率优化等手段降低结构振动传递与船体水下声辐射。船舶动力与传动装置结构动力学优化设计主要有以下途径。1 .优化转子及其支承结构与参数主要通过修改压气机、涡轮、泵等旋转设备转子及其支承结构进而改善其动力学特性,如优化轴承位置、轴承基座结构与布置形式、转子结构、机匣壁板厚度等参数,降低转子振动向支承、船体的传递。2 .优化齿轮齿形与传动设计主要通过三维

9、修形技术进行齿廓修缘(齿高方向的齿顶修缘或齿根修缘)、齿向修形(鼓形修形、螺旋线修形、齿端修薄、展成对角修形),此外通过优化齿轮设计、齿轮箱体壁板厚度与肋板布置等参数,以降低啮合冲击、改善振动噪声性能,降低齿轮箱向船体的振动传递。3 .优化管路排布与参数主要通过优化管路长度、管道直径、弯管曲率等参数与管路支架结构及布置方式,改善管路固有振动特性、支架阻抗特性、管道内流体激励特性等,降低管路-船体间的耦合界面力,从而降低船体水下声辐射。4 .优化气动匹配参数主要通过优化叶片气动型面、展弦比、进气攻角、反动度等参数,改善叶片固有振动特性、气动弹性响应,达到降低气动激振力、削弱非定常气动激励在转子-

10、支承-箱体-船体系统中传递的目的,兼顾拓宽喘振裕度、提高疲劳寿命。(二)振源控制在动力学优化设计的基础上,对振源实施控制措施亦是改善系统结构动态特性的手段。船舶动力与传动装置振源控制主要有以下途径。1 .转子动平衡修正主要通过影响系数法和模态平衡法及其衍生优化方法对燃气轮机转子进行动平衡调整,以降低转子不平衡激振力。2 .转子对中主要通过调整燃气轮机输出轴、联轴器、齿轮箱输入轴的对中状态,改善转子动态特性,降低由平行与偏角不对中引起的线谱激励与摩擦磨损。此外,燃气轮机在长期运行过程中由于弹性减振器、限位器变形等因素会使燃气轮机输出轴对中情况发生改变,因此需要监测装置实时观察输出轴对中状态进行辅

11、助。3 .行星齿轮传动行星齿轮传动具备传动比大、结构紧凑、传动效率高和承载能力强等优点,是船舶动力与传动装置减小体积、提高扭矩和改善振动噪声性能的主要措施之一。可通过双斜齿轮组成人字齿以提高传动平稳性,采用封闭差动结构提高传动比与扭矩,与单级或串联行星齿轮传动相比,其动力性能更具优势且占用空间更小,但其动力学特性也更为复杂。4 .高弹性联轴器燃气轮机、齿轮箱、推力轴承之间均需要通过联轴器相连接以传递动力,高弹性联轴器可依靠弹性元件的弹性变形来补偿两轴线在径向、轴向以及角向的相对位移,此外,高弹性联轴器亦可缓冲减振。针对高速转子的弹性联轴器种类繁多,常用的有波纹管联轴器、梅花联轴器、齿式联轴器、

12、链条联轴器和膜片/膜盘联轴器等,针对不同连接对象选用不同类型与结构形式的高弹联轴器对动力与传动装置振动向船体的传递路径影响均有所不同,合理配置高弹联轴器选型与结构参数自然对降低动力与传动装置振动控制大有裨益。对于齿轮箱输出与推进主轴相连接的高弹联轴器通常采用橡胶组件作为主要承载扭转的弹性元件,橡胶组件可设计成单排或多排,各橡胶组件又有多种标准刚度可供选择。5 .电磁轴承对于动力与传动装置内部转子-轴承系统,采用电磁轴承替代转子-轴承系统中的机械轴承,实现无摩擦的磁悬浮转子支承,也可从源头改善转子系统的振动噪声水平。该技术目前已在核反应堆发电机、透平压缩机组等得到实际应用,针对船用动力装置转子系

13、统的应用研究已在进行中。(三)被动控制船舶动力与传动装置激励具有宽频特性,而且实际系统振动模态丰富,试图仅依赖结构动力学优化设计和振源控制在宽频带内抑制船体舰部振动与声辐射几乎不可能,需要进一步对动力与传动装置的振动响应进行控制。目前研究主要集中在对传递路径的被动、主动控制,其中被动控制通过在转子、支承、箱体等处调节质量、阻尼、刚度等动力学参数来达到控制动力与传动装置-船体系统振动声辐射的目的,主要有以下途径。1 .弹性支承与附加阻尼减振采用橡胶隔振器、钢丝绳隔振器、气囊隔振器、金属橡胶隔振器等安装于动力传动装置与船体之间,以衰减装置振动向船体的传递。为进一步降低隔振频率,准零刚度隔振器通过将

14、正刚度机构与负刚度机构组合,使系统在平衡位置附近刚度接近于零,但大多数准零刚度隔振器基于固定的承载质量设计,当承载质量发生变化时,隔振系统将无法达到最佳隔振效果。采用弹性支承和挤压油膜阻尼是高速转子系统中常见的有效抑制转子振动尤其是过临界振动的措施。弹性支承可使转子的临界转速和过临界时的振动降低,将能引起转子剧烈振动的“弯曲临界模态转移到工作转速以上,燃气轮机中常见的应用有鼠笼弹性支承等。挤压油膜阻尼器的使用可使系统阻尼增大,转子过临界振动明显降低,同时减小转子振动向机壳的传递,进而达到降低船体振动声辐射的目的。针对传统挤压油膜阻尼器存在的非线性油膜力影响,动静压、带浮动环式、弹性环式、可变间

15、隙等多种形式的挤压油膜阻尼器相继被提出,以改善其动力学特性。颗粒阻尼减振技术也被应用于转子叶片、管道以及动力装置基座中,通过颗粒之间不断地碰撞和摩擦来消耗结构体的振动能量。叶林昌等采用基于粒子阻尼的设计方法对齿轮箱安装基座进行减振,试验获得了1010000Hz频段内7dB的振动衰减效果。止匕外,亦可在动力与传动装置箱体表面局部粘接或敷设阻尼材料,形成复合阻尼结构,通过阻尼内部的拉压及剪切变形消耗振动能量,进而减小装置振动向船体的传递。2 .浮筏隔振采用隔振器对燃气轮机、柴油机、齿轮箱、油泵等设备独立进行隔振处理,是阻断船舶动力与传动装置振动向船体传递的有效方式,包括单层隔振与双层隔振,后者隔振

16、效果一般可达30dB以上。由于动力设备输出轴和齿轮箱输入轴之间的对中精度要求较高,同时需要满足摇摆的工作环境,因此齿轮箱通常采用硬弹性隔振,其隔振频率通常在30HZ以上。在此情况下,动力设备弹性安装并且与齿轮箱之间设置有高弹性联轴器以补偿径向与角向位移。为进一步提高动力与传动装置隔振效果以降低船体振动声辐射,将主动力设备与齿轮箱置于同一个公共筏架上形成集中式浮筏隔振(见图2)o主动力设备可选择弹性安装,齿轮箱硬弹性安装,筏架弹性安装于船体上,以实现动力与传动装置的双层隔振,整体系统一阶固有频率通常在5Hz以下,利用两层弹性元件的刚度和附加质量可有效地控制并衰减高频弹性波的传播,从而取得超过40dB的隔振效果。若动力设备刚性安装在筏架上,则与齿轮箱之间无需采用高弹性联轴器,以减少动力损失;若动力设备弹性安装在筏架上,则需采用高弹性联轴器与齿轮箱

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 行业资料 > 航海/船舶

copyright@ 2008-2023 1wenmi网站版权所有

经营许可证编号:宁ICP备2022001189号-1

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。第壹文秘仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知第壹文秘网,我们立即给予删除!