《用动网格模拟闸门开启过程非恒定水流特性.docx》由会员分享,可在线阅读,更多相关《用动网格模拟闸门开启过程非恒定水流特性.docx(5页珍藏版)》请在第壹文秘上搜索。
1、用动网格模拟闸门开启过程非恒定水流特性沙海飞周辉2吴时强I陈惠玲I(1.南京水利科学研窕院南京210029;2.水利部水科学与水工程重点实验室南京210029)【摘要】本文采用非结构动网格技术,采用网格变形与局部重构相结合的方法实现动网格,网格的变形采用弹簧模型,对闸门开启过程非恒定水流特性进行了数值模拟,得到了不同开启速度时的流量、压力分布以及不同流态的特征与发生、开展过程,结果令人满意。【关键字】非结构动网格闸门非恒定水流数值模拟0前言在水工建筑物中,闸门是用于控制水流最为常用的设施。在水坝、船闸等设计过程中,工程技术人员必须了解上下游水流的运动规律。由于闸门前后存在水位差,当水坝、船闸的
2、闸门开启时,门后容易发生水流空化,时常造成空蚀破坏与闸门振动等危害I1.文献发现灌区水闸在闸门开启过程中,过闸水流为非恒定流,闸门开启的时段内闸下产生的冲坑深度,占一次放水过程产生冲坑深度的一半。可见在闸门开启过程非恒定水流是要引起足够重视的。而目前这方面的研究主要结合具体工程进行缩尺模型试验,闸门开启时的非恒定水流与复杂的漩涡运动增加了试验的难度,一般通过测量壁面压力来推断体型是否合理,对闸门后的内部流态了解很少。随着计算机技术的飞速提高,计算流体力学得到了迅速开展,采用数值模拟闸门开启过程非恒定水流特性成为可能。文献对假设闸门突然开启的情况进行了数值模拟,这和实际偏差较大。文献对船闸弧门非
3、恒定流态进行了二维计算,其计算网格是固定的,对弧门处网格进行了特殊处理,和实际也有一定的偏差。文献用动网格技术对挑流冲刷过程进行了数值模拟,采用的是结构网格,用网格变形来实现动网格,这种方法很难用于闸门开启这种复杂的运动过程。随着非结构动网格技术的开展,以及在军事、仿生等领域的成功应用,使精确模拟闸门开启过程非恒定水流的特性成为可能。本文采用非结构动网格技术,对平板闸门不同开启速度时非恒定水流进行了垂向二维数值模拟,探讨了闸门后流态发生、开展机理。1动网格技术本文所处理的问题位移较大,所以采用网格变形与局部重构相结合的方法实现动网格。根本做法是,开设一个包围运动边界的窗口,窗口内的网格可以变形
4、以适应边界的运动。以单元面积为判据,当窗口内即变形区出现严重扭曲的网格单元时,删除变形区内的网格单元,然后用阵面推进法重新生成该区网格。流动参数通过线性插值由旧网格映射到新网格。控制网格变形的弹簧近似模型是将变形区网格看作一个弹簧网络系统,每一条边都认为是一根具有一定倔强系数的弹簧,网格点所受的合力为f=iXG-%)(1);=|其中勺为连结节点,、/的弹簧的倔强系数,Xj是节点i的位置矢量,Nj是与节点i相连的节点数。网格点的受力始终等于初始状态所受的合力,上式可表示节点i的初始受力,那么当运动边界上的点移动后,变形区内节点的新位置坐标可以通过迭代求解如下的线性系统得到。该系统对角占优,JaC
5、Obi迭代格式为:(Ni、/N1+,=M-zSl=当边界运动时,下个时刻的固定边界点和主动边界点的位置解,因此弹簧系统的边界条件为Dirichlet型,上式经过数次迭代就可到达满意的精度。2控制方程与数值求解方法考虑是不可压缅水流流动问题,根本控制方程为ReynOldS方程,省略各变量的时间平均项标志“一“,紊流模型采用双方程模型,方程如下:连续方程(5)动量方程:(6)女方程:(7)岸部嘴尉+GlD(匕IaEc2五=瓦制加+G廉P1.Q工方程:(8)式中,/为时间;和七分别为速度分量和坐标分量;U为运动粘性系数;P为修正压力:工为质量力;匕=c“/为紊动粘性系数;方程中的经验常数Q=O.09
6、,%=1.0,4=1.33,Clff=1.44,C26=l42q为平均速度梯度引起的紊动能产生项,Q=匕包|史l+包11对于雷诺应力项一函的封闭问题,这里用后一双方程模型来处理。采用有限体积法对方程进行离散,对时间和空间均采用二阶精度格式,空间离散采用中心差分格式,对时间采用二阶精度的离散格式是很又必要的,因为研究的闸门开启过程水流随时间的演变是很重要的。压力校正采用SIMP1.EC算法,并采用显式校正步法对SIMP1.EC算法进行了显式校正。上下游均是压力边界条件,给定上下游的总压,对于很长管段中闸门区域的局部模拟,可以采用一维计算为二维计算提供边界条件;壁面采用无滑移边界条件,采用壁面函数
7、来处理壁面边界。3实例计算及分析本文计算区域如图1所示,模拟闸门开启过程非恒定水流特性,上下游水深分别为30m和IOm,闸门长6m,开启速度为八假设闸门是匀速开启的),点A和B分别是闸后1.5m处上下壁面处的压力测点,计算中不考虑上下游水位的变化。计算时间步长为0.01s,计算区域的网格每个时间步长调整一次,经过单个时间步长的网格位移比拟小,采用网格变形的方法处理,经过数步之后,网格扭曲就比拟厉害,进行局部重构,图2是开启时间为IOs的不同时刻的网格情况,网格质量根本较好。共模拟了开启时间为10s、20s、30s和60s四种情况,也就是开启速度分别为06mS0.3ms0.2ms和O.lm/s。
8、图1计算区域示意图图2不同时刻网格开启总时间为10s3.1 流量变化规律图3是不同开启时间的开启过程流量曲线图,在闸门开启前,其流量都为零,随着闸门的逐渐开启,流量都随之增大,在到达全开之后,流量都有一个平稳的增长过程。不同开启时间在开启过程中流量的变化有一定的差异,开启时间短的过程根本曾线性增加,开启时间变长后流量的波动明显加剧,这是由于开启速度的减缓,形成了较大尺度的漩涡,对流量形成了明显的影响。不同开启时间在到达全开时的流量也有明显的差异,开启时间短的过程在到达全开时的流量较小,之后流量的增加也较快,而开启时间长的过程在到达全开时的流量较大,之后的增速也较缓,慢慢接近稳态时的值。OOIO
9、2030405060图3开启过程流量曲线图Oooooo208642II(E07080t(三)3.2 流态特征分析图4是开启时间为10s、20s和30s的不同时刻流态图,为了便于比拟,3种开启时间列出的相对开度是一致的。不同开启时间在较小开度时,闸门后回流区随开度逐渐增大而逐渐形成、开展,在开度增加的过程中,主流厚度在增加,并不断的将原先处于主流上侧的低速水体加速汇入主流,从而能在启门后一段时间内维持门后漩涡的稳定,开启速度较慢时形成的漩涡较大较稳定。随着闸门的进一步开启,闸门后漩涡出现分裂、脱落,接着新的漩涡生成、运动、合并、分裂、脱落等引起水流较剧烈变动,在门后不断有尺寸较小的次生涡产生,随
10、着开度增大,门后回流区尺寸随开度增加而逐渐减小,漩涡产生分裂的周期也不断缩短。(八)开启时间IOs(b)开启时间20s(c)开启时间30s图4闸后流态分布图3.3 3压力分布特征在闸门开启过程中闸门前后的压力变化较大,图5是不同开启时间情况下,闸后A点和B点的压力随相对开度变化的情况。在C=O时A点和B点压力为静水压,压力分别为10XX9.8kPa.在闸门开启的瞬间,压力陡然增大,开启速度越快压力增大值越高,随后在相对开度较小时压力有一个逐渐降低的过程,大概在e=0.5附件,压力又开始上升。整个开启过程中压力都存在波动,在小开度时波动较小,这和小开度时流体较稳定时一致的;在大开度时,压力波动周
11、期变小,波动范围变大,开启时间为30s时的情况更突出,在e=0.45处出现了负压,随后压力又迅速上升。图5压力分布图4结论本文采用非结构动网格对闸门开启过程进行了垂向二维数值模拟,采用网格变形与局部重构相结合的方法实现动网格,在闸门开启过程中网格质量较好,控制方程的离散采用有限体积法,对时间和空间的离散均采用二阶精度,得到的闸门开启过程中流量、压力等随时间变化的规律,以及在开启过程中闸后漩涡的生成、运动、合并、分裂、脱落等水流特性,在定性上可信的。该算例说明本文采用的方法对于边界运动较复杂的精细模拟问题有比拟好的效果,为用数值模拟方法来研究闸门起闭时非恒定水流问题奠定了根底。但是,目前没有得到
12、定量的数据来验证计算结果,对闸门开启过程非恒定水流的分析还是比拟初步的。参考文献1苑明顺,余子牛.船闸输水阀门后底突扩廊道流态特性分析U1.水力发电学报,1997,(2):43-51.2文恒,王永利.闸门开启过程中非恒定流与闸下消能防冲的研究(一)J内蒙古农牧学院学报,1998,19(2):94-98.3朱仁庆,杨松林,王志东.闸门开启中水体流动的数值模拟.华东船舶工业学院学报,1998,12(3):18-21.4杨建明,吴建华.动网格技术数值模拟挑流冲刷过程.水动力学研究与进展A,2001,16(2):156-161.5BlomFJ,ConsiderationsonthespringanalogyJ,JournalOfAircraft,2000,32:647-668.【作者简介】沙海飞,男,1979年9月,硕上,2005年5月毕业于河海大学,现在南京水利科学研究院水工所,助理工程师。