拉格朗日乘数法求极值原理.docx

上传人:p** 文档编号:120093 上传时间:2023-01-03 格式:DOCX 页数:3 大小:17.29KB
下载 相关 举报
拉格朗日乘数法求极值原理.docx_第1页
第1页 / 共3页
拉格朗日乘数法求极值原理.docx_第2页
第2页 / 共3页
拉格朗日乘数法求极值原理.docx_第3页
第3页 / 共3页
亲,该文档总共3页,全部预览完了,如果喜欢就下载吧!
资源描述

《拉格朗日乘数法求极值原理.docx》由会员分享,可在线阅读,更多相关《拉格朗日乘数法求极值原理.docx(3页珍藏版)》请在第壹文秘上搜索。

1、拉格朗日乘数法求极值原理拉格朗日乘数法是用于求条件极值的方法。对于条件极值,通常是将条件方程转换为单值函数,再代入待求极值的函数中,从而将问题转化为无条件极值问题进行求解。但是如果条件很复杂不能转换,就要用到拉格朗日乘数法了。拉格朗日乘数法使用条件极值的一组必要条件来求出一些可能的极值点(不是充要条件,说明求出的不一定是极值,还需要验证)。如寻求函数$z=f(x,y)$在条件$varphi(x,y)=0$下取得极值的必要条件。如果在$(x_0,y_0)$下取得$z$的极值,则首先应该有:$varphi(x_0,y_0)=0$另外,假定在$(x_0,y_0)$的某一领域内$f(x,丫)$与$丫”

2、出他丫)$均有连续的一阶偏导数(没有连续导数让导数为0求极值就没有意义了),并且$”灯垢_丫6_0,丫_0)neq0$。由隐函数存在定理(对于$z=varphi(x,y)$existvarphi_y(x,y)neq0$与$varphi_x(x,y)$则$disp1.aysty1.efracndyrmdx=-fracvarphi_x(x,y)varphi_y(x,y)$)可知,条件方程$varphi(x,y)=0$在$(x_0,y_0)$某领域确定具有连续偏导数的函数$y=psi(x)$,代入$z$得:$z=fEx,psi(x)$于是这个极值可以直接由一个变量$x$来确定,由一元可导函数取极值必

3、要条件得:$disp1.aysty1.e1.eft.fracrmdzrmdxrightIx=x0=fx(x0,y0)+fy(x0,y0)1.eft.fracrmdyrmdxright|_x=x_0=0$即:$disp1.aysty1.ef_x(x_0,y_0)_f_y(x_0,y_0)fracvarphi_x(x_O,y_0)varphi_y(x_O,y_0)=0$设$disp1.aysty1.efracf_y(x_O,y_0)varphi_y(x_0,y_0)=-1.ambda$o为什么要这么设呢?我觉得是因为它本身就是未知的,但又不是完全未知,是两个偏导数之商,在这里面首先不容易计算,其次

4、这个偏导数商的条件也没什么用,因此就直接设为完全未知的参数$1.ambda$了。结合以上可以获得条件极值$(x_0,y_0)$应该满足的必要条件(第二行式子直接代入$必11*1a$可以发现就等于0):$1.eftbeginarray1.crf_x(x_0,y_0)1.ambdavarphi-x(x_0,y_O)=Of_y(x_0,y_0)+1.ambdavarphi_y(x_0,y_0)=0varphi(x_0,y_0)=0endarrayright.$为了方便表达,引入辅助函数$1.(x,y)=f(x,y)+1.ambdavarphi(x,y)$必要条件就变成$1.eftbeginarray

5、1.cr1._x(x_0,y_O)=O1._y(x_0,y_O)=O1._1.ambda(x_0,y_0)=0endarrayright.$于是通过这个联立式求得的$(x,y)$就是可能的条件极值点。当然,是在$(x,丫)$的某领域内有连续偏导数的假设下。对于多维情况(自变量多于2个,条件多于1个),如求$u=f(x,y,z,t)$在附加条件$varphi(x,y,z,t)=0,psi(x,y,z,t)=0$下的极值。作类似的辅助函数(拉格朗日函数)$1.(x,y,z,t)=f(x,y,z,t)+1.ambdavarphi(x,y,z,t)+mupsi(x,y,z,t)$其中$1.ambda,mu$都为参数,求它的偏导数的联立方程即可:$1.eftbeginarray1.cr1._x(x,y,z,t)=01._y(x,y,z,t)=01._z(x,y,z,t)=O1._t(x,y,z,t)=01._1.ambda(x,y,z,t)=01.-mu(x,y,z,t)=0endarray)right.$

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高等教育 > 科普读物

copyright@ 2008-2023 1wenmi网站版权所有

经营许可证编号:宁ICP备2022001189号-1

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。第壹文秘仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知第壹文秘网,我们立即给予删除!