二项式定理及典型试题.docx

上传人:p** 文档编号:1201426 上传时间:2024-11-24 格式:DOCX 页数:17 大小:79.21KB
下载 相关 举报
二项式定理及典型试题.docx_第1页
第1页 / 共17页
二项式定理及典型试题.docx_第2页
第2页 / 共17页
二项式定理及典型试题.docx_第3页
第3页 / 共17页
二项式定理及典型试题.docx_第4页
第4页 / 共17页
二项式定理及典型试题.docx_第5页
第5页 / 共17页
二项式定理及典型试题.docx_第6页
第6页 / 共17页
二项式定理及典型试题.docx_第7页
第7页 / 共17页
二项式定理及典型试题.docx_第8页
第8页 / 共17页
二项式定理及典型试题.docx_第9页
第9页 / 共17页
二项式定理及典型试题.docx_第10页
第10页 / 共17页
亲,该文档总共17页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

《二项式定理及典型试题.docx》由会员分享,可在线阅读,更多相关《二项式定理及典型试题.docx(17页珍藏版)》请在第壹文秘上搜索。

1、二项式定理与典型试题学问点一:二项式定理二项式定理:(+b)*-Cj0+CC-3+Cw1.r+C;炉()公式右边的多项式叫做(+b)的二项绽开式:绽开式中各项的系数0;(101-/)叫做二项式系数;式中的第r+1项叫做二项绽开式的通项,用。“表示;二项绽开式的通项公式为1】=Cs引.学问点二:二项绽开式的特性项数:有n+1项:次数:每项的次数都是n次,即二项绽开式为齐次式:各项组成:从左到右,字母a降相排列,从n到0:字母b升箱排列,从。到n;系数:依次为TJrQ.学问点三,二项式系数的性质对称性:二项绽开式中,与首末两端“等距离”的两项的二项式系数相等单调性:二项式系数在前半部分渐渐增大,在

2、后半部分渐渐减小,在中间取得最大值.其中,当n为偶数时,二项绽开式中间项的二项式系数0?最大;当n为奇数时,二项绽开式中间两项的二项式系数汀,汀相等,且最大.二项式系数之和为T,即C+C:+C;+禺三2*其中,二项绽开式中各奇数项的二项式系数之和等于各偶数项的二项式系数之和,即C+U+C+s三c2+ct+c;+=2”经典例题例1.求(34+9片的绽开式;解:原式=(罕1.吗c=4c3+c(3+c)、CxW+.1.x=81+84+-+54X*【练习1求(3Ga的绽开式2 .求绽开式中的项例2.已知在(近-加的绽开式中,第6项为常数项.(1)求n;(2)求含寸的项的系数;(3)求绽开式中全部的有理

3、项.解:通项为c:,。TXW=(-g)G广因为第6项为常数项,所以r=5时,有彳=0,即n=10(2)令与2=2,得r=2所以所求的系数为C*-2-=竺.324(3)依据通项公式,由题意与晨Z0r10.rZ令吐=KAgZ),则=5-竺,故A可以取2。一2,即r可以取2,5,3 28.所以第3项,第6项,第9项为有理项,它们分别为3(-手炉0(-G(-夕*2【练习2】若7+志)绽开式中前三项系数成等卷数列.求:(1)绽开式中含X的一次麟的项;(2)绽开式中全部X的有理项.3.二项绽开式中的系数例3.已知(6+/产的绽开式的二项式系数和比(3x-1.)的绽开式的二项式系数和大992,求(2x-J的

4、绽开式中:(1)二项式系数最大的项:(2)X系数的肯定值最大的项(先看例9).解:由题意知,2?-2=992,所以2=32,解得n=5.(1)(D由二项式系数性质,Qx-1.严的绽开式中第6项的二项式系数最X大.Ttt=C1;(2a)3(-1)5=-8()64.(2)设第r+1项的系数的肯定值最大,Q.产Ty52F,产,C1,020-C1.,u,21-/C21.-,C29-C2G2G1即1.r2r2(r+1.)10-r解得IMrMvreZ,.r=3,故系数的肯定值最大的项是第4项,7;=-C27.?=-1536Oa练习3已知的绽开式中的第五项的系数与第三项的系X数之比是10:1.求绽开式中含f

5、的项:(2)求绽开式中系数最大的项和二项式系数最大的项.4、求两个二项式乘积的绽开式指定塞的系数例4.(/+1Xx-2)7的绽开式中,/项的系数是解:在绽开式中,X的来源有:第一个因式中取出/,则其次个因式必出J其系数为C(_2)”;第一个因式中取出1,则其次个因式中必出,其系数为.X,的系数应为:C(-2)G+C;(-2)=1008.1.8.5、求可化为二项式的三项绽开式中指定幕的系数例5(M安徽改编)(x+-2)的绽开式中,常数项是;X解:(x+1.2-=3,=S二121,该式绽开后常数项只有一项XX.v,CI),即-20X6、求中间项例6求(i-,的绽开式的中间项;解:T.1.=C,g”

6、亡)、.绽开式的中间项为仁心i)j,当r=0,369时,所对应的项是有理项。故绽开式中有理项有4项。当一个代数式各个字母的指数都是整数时,那么这个代数式是有理式;当一个代数式中各个字母的指数不都是整数(或说是不行约分数)时,那么这个代数式是无理式。8、求系数最大或最小项1)特别的系数域大或最小问题例8(00上海)在二项式(X-Iv的绽开式中,系数最小的项的系数是;解:却=Or-D.,要使项的系数要小,则r必为奇数,且使C;为最大,由此得=5,从而可知最小项的系数为C,(-D=T62般的系数最大或最小问题例9求绽开式中系数最大的项;2ih解:记第/项系数为7设第2项系数域大,则有广之,Tk1.,

7、又7;=C1.1那么有C2C即IfK一2二一2二1c-c:.广7”工Ti(K-IN49-Kp*,zK!8-K)!9-KX解得3分M4,系数最大的项为第3项77/和第4项Z=7)。(3)系数肯定值最大的项例10在(x-)的绽开式中,系数肯定值最大项是解:求系数肯定最大问题都可以将型转化为Fa+/,)”型来处理,故此答案为第4项cy,和第5项_c;小,。9、利用“赋值法”与二项式性质3求部分项系数,二项式系数和例I1.(2x+v5)*=a,+a1.x+a.x1+a,x,+a1.x),则+q)的值为;解:V(2x+,3)*=an+a1.x+a,x:+a,x+a1.x令X=I,有(2+V3)4=(,+

8、a,+a.+ui+,令X=-I,有(-2+75)4(,+.+4)-(,+,)故原式=(“+4+,+)=_解:.(1-2万严=%+4)+%/+.+2004/.令X=I,有(1-2严=。+.+%j=I令X=O,有(1-0产=4=1故原式=(即+at+,+.+*)+2OO3u=1+2003=2004【练习2】设(2r-1.-,x+,x+.+,x+4.则k+m+E+.+d=;解:乙I=C(W(T)rp0+f1.1.+1,+.+at=at-a,+a,-a,+ai-a,+at=(,+.+o1+,)-(1+a,+0,)=110、利用二项式定理求近似值例15.求0.998的近似值,使误差小于0.001;分析:

9、因为0.99泸=(I-0.002儿故可以用二项式定理绽开计算。解:0.998h=(1-0.002F=I+6.(-0.002)+15.(-0.002):+.+(-0.002)6/7;=(.(-O.2)2=I5(-O.OO2)2=0.(XKX)6+C2+.+O,当X的肯定值与1相比很小且很大时,/.一等项的肯定值都很小,因此在精确度允许的范围内可以忽视不计,因此可以用近似计算公式:(1.+x)z+,在运用这个公式时,要留意按问题对精确度的要求,来确定时绽开式中各项的取舍,若精确度要求较高,则可以运用更精确的公式:八、”.1)ra+,-x-新课标人教版排列、组合与二项式定理(选修23)留意事项:1

10、.本试题分为第I卷和第I1.卷两部分,满分150分,考试时间为120分钟。2 .答第I卷前务必将自己的姓名、考号、考试科目涂写在答题卡上。考试结束,试题和答题卡,并收回。3 .第1卷每题选出答案后,都必需用2B铅笔把答题卡上对应题目的答案标号(ABCD)涂黑,如需改动,必需先用橡皮擦干净,再改涂其它答案.第I卷一、选择题:本大题共16小题,每小题5分,共80分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(08年上海卷12组合数C(rb爪rZ)恒等于n()a篙1;B.(D6%;C.nrC二D.4弋rr1.2.一次考试中,要求考生从试卷上的9个题目中选6个进行答题,要求至少包含前5个

11、题目中的3个,则考生答题的不同选法的种数是A.40B.74C.84D.2003 .以三棱柱的六个顶点中的四个顶点为顶点的三棱锥有()A.18个B.15个C.12个D.9个4 .从一架钢琴挑出的十个音键中,分别选择3个,4个,5个,10个键同时按下,可发出和弦,若有一个音键不同,则发出不同的和弦,则这样的不同的和弦种数是()A.512B.968C.1013D.10245 .假如(+A)的绽开式中全部奇数项的系数和等;512,则绽开式的中间项是()A.味了B.77C.或.iD.屐/”46 .用0,3,4,5,6排成无重红字的五位数,要求偶数字相邻,奇数字也相邻,则这样的五位数的个数是()A.36B

12、.32C.24D.207 .现有一个碱基力,2个减基43个碱基由这6个碱基组成的不同的碱基序列有()A.20个B.60个C.120个D.90个8 .某班新年联欢会原定的6个节目已排成节目单,开演前又增加了3个新节目,假如将这3个节目插入原节目单中,那么不同的插法种数为()A.504B.210C.336D.1209 .(1.+x)3+(1.+(1.+x严的绽开式中,f的系数等于D&B小10 .现有男女学生共8人,从男生中选2人,从女生中选1人,分别参与数理化三科竞赛,共有90种不同方案,则男、女生人数可能是()A.2男6女B.3男5女C.5男3女D.6男2女11 .若WR,.定义MJ=X(X+1

13、)(*+2)1),例如M1.=(-5)(-4)(-3)(-2)(-1)=-120,则函数/(x)=AM2的奇偶性为()A.是偶函数而不是奇函数B.是奇函数而不是偶函数C.既是奇函数又是偶函数D.既不是奇函数又不是偶函数12 .已知集合力=1,2,3,Q4,5,6),从巾到8的映射力,中有且仅有2个元素有原象,则这样的映射个数为()A.8B.9C.24D.2713 .有五名学生站成排照毕业纪念照,其中甲不排在乙的左边,又不与乙相邻,而不同的站法有().24种B.36种C.60种D.66种14 .等腰三角形的三边均为正数,它们周长不大于10,这样不同形态的三角形的种数为(A.8B.9C.10D.1115 .甲、乙、丙三同学在课余时间负责一个计算机房的周一至周

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 中学教育 > 试题

copyright@ 2008-2023 1wenmi网站版权所有

经营许可证编号:宁ICP备2022001189号-1

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。第壹文秘仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知第壹文秘网,我们立即给予删除!