午练5 概率统计+立体几何.docx

上传人:p** 文档编号:218127 上传时间:2023-04-17 格式:DOCX 页数:3 大小:33.96KB
下载 相关 举报
午练5 概率统计+立体几何.docx_第1页
第1页 / 共3页
午练5 概率统计+立体几何.docx_第2页
第2页 / 共3页
午练5 概率统计+立体几何.docx_第3页
第3页 / 共3页
亲,该文档总共3页,全部预览完了,如果喜欢就下载吧!
资源描述

《午练5 概率统计+立体几何.docx》由会员分享,可在线阅读,更多相关《午练5 概率统计+立体几何.docx(3页珍藏版)》请在第壹文秘上搜索。

1、午练5概率统计+立体几何【题目1近年来,高铁的发展逐渐改变了人们的出行方式,我国20162020年高铁运营里程的数据如下表所示.年份20162017201820192020年份代码X12345高铁运营里程M万千米)1.92.22.52.93.5(1)若X与y具有线性相关关系,求y关于X的线性回归方程;(2)每一年与它前一年的高铁运营里程之差即为该年新增的里程,根据这五年的数据,若用20172020年每年新增里程的频率代替之后每年新增相应里程的概率,求2024年中国高铁运营里程大于或等于5万千米的概率.附:线性回归方程:=:+中斜率和截距的最小二乘估计公式分别为:工孙一XyA一b=-H-,a=y

2、bx.t-nx2i解(I)X=IX(I+2+3+4+5)=3,y=(1.9+2.2+2.5+2.9+3.5)=2.6.5E砂=IX1.9+2X2.2+3X2.5+4X2.9+5X3.5=42.9,/=I5x?=1+4+9+16+25=55,/=142.9-5 32,6555X3?=0.39,Xiy-Sxy所以5二4-xt-5x2=2.6-0.39X3=1.43,所以y关于1的线性回归方程为y=0.39x+1.43.(2)设每年新增高铁运营里程为X万千米,则X的取值为0.3,0.4,0.6,由条件知X的分布列为X0.30.40.6P21414若2024年中国高铁运营里程小于5万千米,则2021-

3、2024年每年新增的高铁运营里程有三种情况:0.34,0.3X3+040.32+0.42.相应概率为辞+a(+c收九%套923所以2024年中国高铁运营里程大于或等于5万千米的概率为1一百=符【题目2】如图,四边形ABCO为菱形,NABC=I20。,四边形BDFE为矩形,平面8DFE_L平面A8CD,点P在AD上,EPl.BC.(1)证明:AO_L平面BEP;(2)若EP与平面ABCD所成角为60,求二面角C-PE-B的余弦值.(1)证明因为EPj_8C,AD/BC,所以AO_LEP.因为四边形BoFE为矩形,所以又因为平面BDFE_L平面ABCDf且平面BDFEG平面ABCD=BD,BEU平

4、面BDFE,故由面面垂直的性质定理得BE_L平面ABCD,又A。U平面ABCD,所以BELAD,又因为BEEP=E,BE,EPU平面BEP,所以ADJL平面BEP.解由知EBJ_平面ABCD,所以NEPB为EP与平面ABC。所成的角,所BEr-以NEPB=60。,=3.由ADl,平面8EP,知Aoj_3P.设AB=2,则BP=小,BE=3.连接AC以AC和8。的交点。为原点,建立如图所示的空间直角坐标系.则A(0,3,0),C(0,3,0),D(-l,0,0),G一半)EQ,0,3),所以无=也,羊,0),CF=(1,-3,3).设=(x,y,z)为平面CEP的一个法向量,则卜:=%+鸣=。,可取G小J塔.LrCE=X-3y3z=0,由可知病=(-1,3,0)为平面BEP的一个法向量,所以COS(71,病=0&=绊一I川曲T+327+l+y_3=5结合图可知二面角C-PE-B为锐角,所以二面角C-PE-B的余弦值为亍

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高等教育 > 统计学

copyright@ 2008-2023 1wenmi网站版权所有

经营许可证编号:宁ICP备2022001189号-1

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。第壹文秘仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知第壹文秘网,我们立即给予删除!