正弦定理 教学设计.docx

上传人:p** 文档编号:355519 上传时间:2023-08-05 格式:DOCX 页数:10 大小:64.12KB
下载 相关 举报
正弦定理 教学设计.docx_第1页
第1页 / 共10页
正弦定理 教学设计.docx_第2页
第2页 / 共10页
正弦定理 教学设计.docx_第3页
第3页 / 共10页
正弦定理 教学设计.docx_第4页
第4页 / 共10页
正弦定理 教学设计.docx_第5页
第5页 / 共10页
正弦定理 教学设计.docx_第6页
第6页 / 共10页
正弦定理 教学设计.docx_第7页
第7页 / 共10页
正弦定理 教学设计.docx_第8页
第8页 / 共10页
正弦定理 教学设计.docx_第9页
第9页 / 共10页
正弦定理 教学设计.docx_第10页
第10页 / 共10页
亲,该文档总共10页,全部预览完了,如果喜欢就下载吧!
资源描述

《正弦定理 教学设计.docx》由会员分享,可在线阅读,更多相关《正弦定理 教学设计.docx(10页珍藏版)》请在第壹文秘上搜索。

1、1.1.1正弦定理教学要求:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题.教学重点:正弦定理的探索和证明及其基本应用.教学难点:已知两边和其中一边的对角解三角形时判断解的个数.教学过程:一、复习引入:1.在任意三角形行中有大边对大角,小边对小角的边角关系?是否可以把边、角关系准确量化?2 .在AABC中,角A、B、C的正弦对边分别是,b,c,你能发现它们之间有什么关系吗?结论:O二、讲授新课:探究一:在直角三角形中,你能发现三边和三边所对角的正弦的关系吗?直角三角形中的正弦定理:sin=-sin/?=-Sinol

2、即片_.ccsinAsinBsinC探究二:能否推广到斜三角形?(先研究锐角三角形,再探究钝角三角形)当力8。是锐角三角形时,设边力8上的高是CD,根据三角函数的定义,有CO = asin8=bsinA,贝IJ-= -.同理, sin A sin Ba b c=-=-.Sin A sin B sin C探究三:你能用其他方法证明吗?1.证明一:(等积法)在任意斜当中5=-aZ?sinC =acsin = -Z?csin.222两边同除以!Hc即得: =2sin A sin B sin C2.证明二:(外接圆法)如图所示,ZJ=ZZ?,- =二一(思考如何作高?),从而 SinA SinC= C

3、D = IR , sin A sin Dbc同理=2=2sinBSinC3 .证明三:(向量法)过力作单位向量/垂直于AC,由4C+C8=A8边同乘以单位向量/得.正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即=2RSin力sinZsine理解定理1公式的变形:(1)。= 27?sin A,b = 2Rsin B,c = 2Rsin C(2)sin A = ,sin B = ,sin C =, 2R 2R 2R(3).bc=sinA:sinB:sinC(4)=,=:-,=sinAsinBsinAsinCsinCsinB2 .正弦定理的基本作用为:已知三角形的任意两角及其一边可以求其

4、他边,如a=丝黑Sinn已知三角形的任意两边与其中一边的对角可以求其他角的正弦值,如sin1=Ssin6D一般地,已知三角形的某些边和角,求其他的边和角的过程叫作解三角形.3 .利用正弦定理解三角形使,经常用到:A+B+C=4Sin(A+8)=SinGCOS(A+8)=SinCSMhC=gahsinC三、教学例题:例1已知在A8C中,C=IO,4=45,C=30,求。,力和8.分析已知条件一讨论如何利用边角关系一示范格式一小结:已知两角一边解:vc=lO,A=45o,C=3OoB=18()-(A+C)=105由,一=一得竺皿=Iox疝/5。=0/sinAsinCsinCsin30,bC3.c-

5、sinB10sin1050.“ouu后由=得b=2()sin75=56+52sinBsinCsinCsin30评述:此类问题结果为唯解,学生较易掌握,如果已知两角和两角所夹的边,也是先利用内角和180求出第三角,再利用正弦定理.例2A8C中,,=布,4=45,。=2,求6和民。z,jac.一csinAVsin4503角不:*/=,.SinC=SinASinCa22OoCc,B=60。,.CB,C为锐角,:.C=30,3=90a=yb2+c2=2【变式】ABC,a=&,A=135,b=&,求B四、小结:五、课后作业1.在/!比中,一二一=二%,则女为(2A)sinAsinBsinCA2R仅kQA

6、RDR(斤为449C外接圆半径)24C2在AABC中,已知角8=45,c=22,Z?=-,则角A的值是一3A.15oB.75oC.105oD.75或153、在446C中,若4=30。,3=60。,则a:/?:C=_1:百:24、在A8C中,若8=60,b=7y6,a=l4,则A=6,a=14,则A=。5、在AABC中,已知。=Q,。=J5,B=45,解三角形。六心得反思1.L2解三角形的进一步讨论教学目标掌握在已知三角形的两边及其中一边的对角解三角形时,有两解或一解或无解等情形;三角形各种类型的判定方法。教学重点在已知三角形的两边及其中一边的对角解三角形时,有两解或一解或无解等情形;三角形各种

7、类型的判定方法。教学过程I.课题导入创设情景思考:在AABC中,已知a=22c,b=25cm,4=133,解三角形。(由学生阅读课本第9页解答过程)从此题的分析我们发现,在己知三角形的两边及其中一边的对角解三角形时,在某些条件下会出现无解的情形。下面进一步来研究这种情形下解三角形的问题。II.讲授新课探索研究探究一.在AABC中,已知且力,力,讨论三角形解的情况分析:先由sin6=上里可进一步求出B;a则。=180-+8),从而C=竺贬SinA1 .当A为钝角或直角时,必须a人才能有且只有一解;否则无解。2 .当A为锐角时,如果a26,那么只有一解;3 .如果aVb,那么可以分下面三种情况来讨

8、论:(1)若aAsin4,则有两解;(2)若a=Asin4,则只有一解;(3)若avbsin力,则无解。(以上解答过程详见课本第910页)评述:注意在己知三角形的两边及其中一边的对角解三角形时,只有当A为锐角且6sinvav6时,有两解;其它情况时则只有一解或无解。探究二你能画出图来表示上面各种情形下的三角形的解吗?三例题讲解例1.根据下列条件,判断解三角形的情况(Da=20,(=28,4=120.无解(2)q=28,b=20,=45o;一解(3)c=54,/5=45,如果利用正弦定理解三角形有两解,求X的取值范围。(答案:(1)有两解;(2)0;(3)2=16,A=45(2)、=12,c=15,A=120(3)、0=8,h=16,A=30(4)Z?=18,c=20,B=602 在AABC中,0=15,b=10,A=60,则cosBA至B述C-近D近33333己知a,b,c分别是AABC的三个内角A,B,C所对的边,若a=,b=6A+C=2氏则SinC_4根据条件解三角形:(1)C=IO,A=45,C=30,求边,8(2)A=30,8=120,6=12,求边“,c.(3)a=16,7=165,A=30,求角3,C和边c.(4

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高等教育 > 微积分

copyright@ 2008-2023 1wenmi网站版权所有

经营许可证编号:宁ICP备2022001189号-1

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。第壹文秘仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知第壹文秘网,我们立即给予删除!