数字信号处理邵曦lecture22.ppt

上传人:p** 文档编号:464968 上传时间:2023-09-07 格式:PPT 页数:18 大小:491KB
下载 相关 举报
数字信号处理邵曦lecture22.ppt_第1页
第1页 / 共18页
数字信号处理邵曦lecture22.ppt_第2页
第2页 / 共18页
数字信号处理邵曦lecture22.ppt_第3页
第3页 / 共18页
数字信号处理邵曦lecture22.ppt_第4页
第4页 / 共18页
数字信号处理邵曦lecture22.ppt_第5页
第5页 / 共18页
数字信号处理邵曦lecture22.ppt_第6页
第6页 / 共18页
数字信号处理邵曦lecture22.ppt_第7页
第7页 / 共18页
数字信号处理邵曦lecture22.ppt_第8页
第8页 / 共18页
数字信号处理邵曦lecture22.ppt_第9页
第9页 / 共18页
数字信号处理邵曦lecture22.ppt_第10页
第10页 / 共18页
亲,该文档总共18页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

《数字信号处理邵曦lecture22.ppt》由会员分享,可在线阅读,更多相关《数字信号处理邵曦lecture22.ppt(18页珍藏版)》请在第壹文秘上搜索。

1、11.6 High-Order Filters High-order filter can implement sharp cutoff specifications.In this lessen,N-order Butterworth lowpass AF serves as the prototype(原 型原 型)in the bilinear transformation method.Specifications of a typical lowpass filter:LPDF:,stoppassstoppassAAff(Fig.11.6.1)passf:passband frequ

2、ency 通带(临界)频率通带(临界)频率 211pass:attenuation of 2|)(|passfH relative to 2|)0(|H(DC)passA:corresponding attenuation in decibels at passf Normalizing|H(0)|=1,)1lg(10)11lg(1022passpasspassA (11.6.4)passA is also the maximum attenuation required in the passband passAfA)(0,for passff 0 (11.6.1)The meaning i

3、s similar for:stopf(stopband frequency),stopA(minimum attenuation achieved in the stopband).By appropriate choice of,stoppassstoppassAAff,the filter can be made as close to an ideal lowpass filter as desired.Higher-order filter required Specification prewarpping:When using binlinear transformation m

4、ethod,the prewarped specification for LPAF should be:,stoppassstoppassAA where)2tan(passpass,)2tan(stopstop (11.6.5)11.6.1 Analog Lowpass Butterworth Filters Procedures to design an analog lowpass filter:(summarized from the section)a)给出一种低通形状的模平方幅度函数给出一种低通形状的模平方幅度函数2|)(|H (H(s)是是 s 的有理分式的有理分式2|)(|H

5、应是应是2的有理分式的有理分式)b)确定技术指标与确定技术指标与2|)(|H中待定参数的关系中待定参数的关系 c)求求 H(s),使之具有如上,使之具有如上2|)(|H a)Magnitude response squared for Butterworth lowpass filters:NH202)(11|)(|(11.6.7)Two parameters:0:frequency of 3dB attenuation (2|)0(|H1,20|)(|H1/2)N:order of the filter.N sharper response,but 3dB frequency remains

6、 0 b)Determine N、0by specifications,stoppassstoppassAA Attenuation at frequency:)(1lg10|)(|lg10)(202NHA (11.6.8)Thus,the given specifications requires:stopstoppasspassAAAA)()((p.606)1 2 Solving the equations(1)and(2),)/ln()/ln(passstoppassstopexactN (11.6.10)exactN may not be an integer,we chooseexa

7、ctNN (11.6.12)Taking N back to equation(1),we get 0(11.6.13)which causes stopstopAA)(.Taking N back to equation(2),we get a slightly different 0 which causes passpassAA)(Setting H(s)1/D(s),we have NNNsjssDsD2020*)()1(1)(1)()(11.6.16)2N roots of)()(*sDsD distributed uniformly on a circle of radius 0

8、in conjugate pairs (Fig.11.6.2)21(2,0iNNesijii(i=12N)(11.6.17)To make H(s)causal and stable,we should choose N roots Nss,.,1 in the left-hand s-plane to obtain D(s).Write D(s)in cascade form of SOS:)12()()()()2()()()()(1021KNsDsDsDKNsDsDsDsDKK (11.6.18)001)(ssD (first-order section,zero:0)2020*cos21

9、)1)(1()(sssssssDiiii(i=1K)(SOS,conjugate roots:is、*is)Replacing 0s by s,we get Table 11.6.1 of)(sD(Butterworth polynomials)under various order N.)()()()(10sHsHsHsHK(11.6.21))(1)(sDsHii 11.6.2 Digital Lowpass Filters Design lowpass DF from Butterworth lowpass AF prototype:(p.612)step1:Specification p

10、rewarping)2tan(passpass,)2tan(stopstop step2:Determine Butterworth filter N、0from,stoppassstoppassAA.Look up Table 11.6.1 to obtain)(sH.step3:1111|)()(zzssHzH)()()(|)(|)(|)(1011111110111111zHzHzHsHsHsHKzzsKzzszzs Alternatively,one can obtain final H(s)in SOS form from calculating(11.6.23)(11.6.26)Ex

11、ample 11.6.3 passf4kHz,passA0.5dB,stopf5kHz,stopA10dB,sf20kHz Solution:step 1:DF specifications:spasspassff2,sstopstopff2 prewarping:)2tan(passpass,)2tan(stopstop step 2:Calculate N、0 for Butterworth lowpass AF.(stoppass,are introduced for convenience)N=7.We get 1412,1410,148,321 from Table 11.6.1 e

12、xcept the unlisted 0 corresponding to the root 0.step 3:Take 321,、0 into(11.6.23)()(11.6.24)and 0 into(11.6.25)()(11.6.26)to calculate the SOS coefficients,resulting in the SOS cascade form of H(z).11.6.3 Digital Highpass Filters Starting from Butterworth lowpass AF prototype,the designing of highpass DF should use bilinear transformation 1111zzs The steps are similar to that of designing lowpass DF,except that the equation in Step1 is(11.6.31)and equations in Step3 are(11.6.32)(11.6.36)

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高等教育 > 大学课件

copyright@ 2008-2023 1wenmi网站版权所有

经营许可证编号:宁ICP备2022001189号-1

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。第壹文秘仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知第壹文秘网,我们立即给予删除!