《一次函数全章教案-新人教版.docx》由会员分享,可在线阅读,更多相关《一次函数全章教案-新人教版.docx(36页珍藏版)》请在第壹文秘上搜索。
1、第十九章一次函数教案19.1.1变量教具;课件,直尺,三角板教学目标学问与技能:理解变量与函数的概念以及相互之间的关系。增加对变量的理解过程与方法:师生互动,讲练结合情感看法世界观:渗透事物是运动的,运动是有规律的辨证思想重点:变量与常量难点:对变量的推断教学媒体:多媒体电脑,绳圈,教学说明:本节渗透找变量之间的简洁关系,试列简洁关系式教学设计:引入:信息1:当你坐在摩天轮上时,想一想,随着时间的变更,你离开地面的高度是如何变更的?信息2:汽车以60kmh的速度匀速前进,行驶里程为Skm,行驶的时间为th,先填写下面的表格,在试用含t的式子表示t/m12345s/km新课:问题:(1)每张电影
2、票的售价为10元,假如早场售出票150张,日场售出票205张,晚场售出票310张,三场电影的票房收入各多少元?设一场电影受出票X张,票房收入为y元,怎样用含X的式子表示y?(2)在一根弹簧的下端悬挂中重物,变更并记录重物的质量,视察并记录弹簧长度的变更规律,假如弹簧原长IoCm,每Ikg重物使弹簧伸长0.5cm,怎样用含重物质量m(单位:kg)的式子表示受力后弹簧长度I(单位:Cm)?(3)要画一个面积为IOCm2的圆,圆的半径应取多少?圆的面积为20cm2呢?怎样用含圆面积S的式子表示圆的半径r?(4)用IOm长的绳子围成长方形,试变更长方形的长度,视察长方形的面积怎样变更。记录不同的长方形
3、的长度值,计算相应的长方形面积的值,探究它们的变更规律,设长方形的长为xm,面积为Sr2,怎样用含X的式子表示S?在一个变更过程中,我们称数值发生变更的量为变量(variable).数值始终不变的量为常量。指出上述问题中的变量和常量。范例:写出下列各问题中所满意的关系式,并指出各个关系式中,哪些量是变量,哪些量是常量?(1)用总长为60m的篱笆围成矩形场地,求矩形的面积S(m2)与一边长x(m)之间的关系式;(2)购买单价是0.4元的铅笔总金额乂元后购买的铅笔的数量n(支)的关系;(3)运动员在4000m一圈的跑道上训练,他跑一圈所用的时间t(s)与跑步的速度v(ms)的关系;(4)银行规定:
4、五年期存款的年利率为2.79%,则某人存入X元本金与所得的本息和y(元)之间的关系。活动:1.分别指出下列各式中的常量与变量.(1)圆的面积公式S=r2;(2)正方形的l=4a;(3)大米的单价为2.50元/千克,则购买的大米的数量(kg)与金额与金额y的关系为y=2.5x.2.写出下列问题的关系式,并指出不、常量和变量.(1)某种活期储蓄的月利率为0.16%,存入10000元本金,按国家规定,取款时,应缴纳利息部分的20%的利息税,求这种活期储蓄扣除利息税后实得的本息和y(元)与所存月数X之间的(2)如图,每个图中是由若干个盆花组成的图案,每条边(包括两个顶点)有n盆花,每个图案的花盆总数是
5、S,求S与n之间的关系式.思索:怎样列变量之间的关系式?小结:变量与常量19.1.2函数教具课件,直尺,三角板学问与技能:理解函数的概念,能精确识别出函数关系中的自变量和函数会用变更的量描述事物过程与方法:师生互动,讲练结合情感看法世界观:回用运动的观点视察事物,分析事物重点:函数的概念难点:函数的概念教学媒体:多媒体电脑,计算器教学说明:留意区分函数与非函数的关系,学会确定自变量的取值范围教学设计:引入:信息1:小明在14岁生日时,看到他爸爸为他记录的以前各年周岁时体重数值表,你能看出小明各周岁时体重是如何变更的吗?周岁123456体重9.1113151618(kg)3.8.5.4.7.07
6、89101112131921232273032.6.5.25.6.2.5信息2:当你坐在摩天轮上时,随着旋转时间t(min)与你离开地面的高度h(m)之间的关系如图,你能填写下表吗?新课:这张图告知我们哪些信息?这张图是怎样来展示这天各时刻的温度和刻画这铁的气温变更规律的?(2)收音机上的刻度盘的波长和频率分别是用米(m)和赫兹(KHz)为单位标刻的,下表中是一些对应的数:波长l(m)30050060010001500频率f(KHz)1000600500300200这表告知我们哪些信息?这张表是怎样刻画波长和频率之间的变更规律的,你能用一个表达式表示出来吗?一般的,在一个变更过程中,假如有两个
7、变量X和y,并且对于X的每一个确定的值,y都有惟一确定的值与其对应,那么我们就说X是自变量,y是X的函数。假如当x=a时,y=b,那么b叫做当自变量的值为a时的函数值。范例:例1推断下列变量之间是不是函数关系:(5)长方形的宽肯定时,其长与面积;(6)等腰三角形的底边长与面积;(7)某人的年龄与身高;活动1:阅读教材7页视察1.后完成教材8页探究,利用计算器发觉变量和函数的关系思索:自变量是否可以随意取值例2一辆汽车的油箱中现有汽油50L,假如不再加油,那么油箱中的油量乂单位:L逆行驶里程乂单位km胎增加而削减,平均耗油量为0.1Ukmo(1)写出表示y与X的函数关系式.(2)指出自变量X的取
8、值范围.解:(1)y=50-0.1x(2)0x500活动2:练习教材9页练习小结:(1)函数概念(2)自变量,函数值(3)自变量的取值范围确定作业:2,3,41913函数图象(一)教具课件,直尺,三角板学问与技能:学会用图表描述变量的变更规律,会精确地画出函数图象结合函数图象,能体会出函数的变更状况过程与方法:师生互动,讲练结合情感看法世界观:增加动手意识和合作精神重点:函数的图象难点:函数图象的画法教学媒体:多媒体电脑,直尺教学说明:在画图象中体会函数的规律教学设计:信息2:自动测温仪记录的图象,他反映了北京的春季某天气温T如何随时间的变更二变更,你从图象中得到了什么信息?新课:问题:正方形
9、的边长X与面积S的函数关系为S=2,你能想到更直观地表示S与X的关系的方法吗?一般地,对于一个函数,假如把自变量与函数的每对对应诃子分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象(graph)范例:例1下面的图象反映的过程是小明从家去菜地浇水,有去玉米地锄草,然后回家.其中X表示时间,y表示小名离家的距离.依据图象回答问题:(8)菜地离小明家多远?小明走到菜地用了多少时间?;(9)小明给菜地浇水用了多少时间?(10)菜地离玉米地多远?小明从菜地到玉米地用了多少时间?(11)小明给玉米锄草用了多少时间?(12)玉米地离小名家多远?小明从玉米地走回家的平均速度是多少?
10、例2在下列式子中,对于X的每一确定的值,y有唯一的对应值,即y是X的函数,画出这些函数的图象:(1)y=x+0.5;y=9(x0)X活动1:教材16页练习1,2题思索:画函数图象的一般步骤是什么?小结:(1)什么是函数图象(2)画函数图象的一般步骤作业:19:5,7题课题:19.1.3函数图象(二)教具课件,直尺,三角板学问与技能:学会函数不同表示方法的转化,会由函数图象提取信息正确识别函数图象过程与方法:师生互动,讲练结合情感看法世界观:激发学生的探究精神重点:利用函数图象解决问题难点:从函数图象中提取信息教学媒体:多媒体电脑,直尺教学说明:在画图象中找函数的规律教学设计:函数的表示方法为列
11、表法、解析式法和图形法,这三种方法在解决问题时是可以相互转化的。范例:例1一水库的水位在最近5消耗司内持续上涨,下表记录了这5个小时水位高度.解:(1)y=0.05t+10(0t7)(2)当t=5+2=7时,y=0.05t+10=10.35预料2小时后水位将达到10.35米。思索:函数图象上的点的坐标与其解析式之间的关系?例2已知函数y=2x-3,求:(1)函数图象与X轴、y轴的交点坐标;(2)x取什么值时,函数值大于1;(3)若该函数图象和函数y=-x+k相交于X轴上一点,试求k的值.活动2:在同始终角坐标系中,画出函数y=-x与函数y=2x-1的图象,并求出它们的交点坐标练习:教材18页:
12、练习1,2题小结:(1)函数的三种表示方法;(2)函数图象上点的坐标与函数关系式之间的关系;作业:8,9,10题19.2.1正比例函数教具课件,直尺,三角板教学目标(一)教学学问点学问与技能:相识正比例函数的意义.1 .驾驭正比例函数解析式特点.2 .理解正比例函数图象性质及特点.3 .能利用所学学问解决相关实际问题.过程与方法:师生互动,讲练结合情感看法世界观:回用运动的观点视察事物,分析事物教学重点1 .理解正比例函数意义及解析式特点.2 .驾驭正比例函数图象的性质特点.3 .能依据要求完成转化,解决问题.教学难点正比例函数图象性质特点的驾驭.教学过程,提出问题,创设情境一九九六年,鸟类探
13、讨者在芬兰给一只燕鸥删口鸟)套上标记环.4个月零1周后人们在2.56万千米外的澳大利亚发觉了它.1 .这只百余克重的小鸟大约平均每天飞行多少千米(精确到10千米)?2 .这只燕鸥的行程y(千米)与飞行时间X(天)之间有什么关系?3 .这只燕鸥飞行1个半月的行程大约是多少千米?我们来共同分析:一个月按30天计算,这只燕鸥平均每天飞行的路程不少于:25600(304+7)200(km)若设这只燕鸥每天飞行的路程为200km,那么它的行程y(千米)就是飞行时间X(天)的函数.函数解析式为:y=200x(0x127)这只燕鸥飞行1个半月的行程,大约是x=45时函数y=200x的值.即y=20045=9
14、000(km)以上我们用y=200x对燕鸥在4个月零1周的飞行路程问题进行了刻画.尽管这只是近似的,但它可以作为反映燕鸥的行程与时间的对应规律的一个模型.类似于y=200x这种形式的函数在现实世界中还有许多.它们都具备什么样的特征呢?我们这节课就来学习.导入新课首先我们来思索这样一些问题,看看变量之间的对应规律可用怎样的函数来表示?这些函数有什么共同特点?1 .圆的周长L随半径r的大小变更而变更.2 .铁的密度为7.8gcm3.铁块的质量m(g)随它的体积V(cm3)的大小变更而变更.3 .每个练习本的厚度为0.5cm.一些练习本摞在一些的总厚度Kcm)随这些练习本的本数n的变更而变更.4 .冷冻一个0。C的物体,使它每分钟下降2。C.物体的温度T()随冷冻时间t(分)的变更而变更.5 :1.依据圆的周长公式可得:L=2乃r.tn6 .依据密度公式p=V可得:m=7.8V.7 .据题意可知:h=0.5n.8 .据题意可知:T=-2t.我们视察这些函数关系式,不难发觉这些函数都是常数与自变量乘积的形式,和y=200x的形式一样.一般地,形如y=kx(k是常数,k*0)的函数,叫做正比例函数(proportionalfunc-tion),其中k叫做比例系数.我们现在已经知道了正比例函数关系式的特点,那么