第01讲5.1导数的概念及其几何意义(解析版).docx

上传人:p** 文档编号:799660 上传时间:2024-03-04 格式:DOCX 页数:15 大小:117.33KB
下载 相关 举报
第01讲5.1导数的概念及其几何意义(解析版).docx_第1页
第1页 / 共15页
第01讲5.1导数的概念及其几何意义(解析版).docx_第2页
第2页 / 共15页
第01讲5.1导数的概念及其几何意义(解析版).docx_第3页
第3页 / 共15页
第01讲5.1导数的概念及其几何意义(解析版).docx_第4页
第4页 / 共15页
第01讲5.1导数的概念及其几何意义(解析版).docx_第5页
第5页 / 共15页
第01讲5.1导数的概念及其几何意义(解析版).docx_第6页
第6页 / 共15页
第01讲5.1导数的概念及其几何意义(解析版).docx_第7页
第7页 / 共15页
第01讲5.1导数的概念及其几何意义(解析版).docx_第8页
第8页 / 共15页
第01讲5.1导数的概念及其几何意义(解析版).docx_第9页
第9页 / 共15页
第01讲5.1导数的概念及其几何意义(解析版).docx_第10页
第10页 / 共15页
亲,该文档总共15页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

《第01讲5.1导数的概念及其几何意义(解析版).docx》由会员分享,可在线阅读,更多相关《第01讲5.1导数的概念及其几何意义(解析版).docx(15页珍藏版)》请在第壹文秘上搜索。

1、课程标准学习目标初步了解导数概念的背景,掌握平均变化率与瞬时变化率的概念及几何意义。会求函数的平均变率与瞬时变化率。能结合实际问题求曲线在某点处与某点附近点的切线与割线的斜率的极限值。通过本节课的学习,要求会求函数的平均变化率与瞬时变化率.知识点01:函数的平均变化率1、定义:一般地,函数/(X)在区间国,七上的平均变化率为:与三表示为函数/(x)从占到工2的平均变化率,若设x=x2-x1,y=(x2)-(xl)则平均变化率为绿=)(y2)一/(再)=/(,+)一/(XJxx2-xix2、求函数的平均变化率通常用“两步”法:作差:求出Ay=/(吃)一/(/)和=X2一玉y(x1)作商:对所求得

2、的差作商,即/二-xx2-xl【即学即练U(2023全国高二课堂例题)已知函数/(x)=3x+2,g(x)=f,分别计算它们在区间-2,7,1,5上的平均变化率.【答案】3;3;3;6【详解】函数/(x) = 3x + 2在-2,-1上的平均变化率为/2)0(7)+2卜30+2(-1)-(-2)1函数x)=3x+2在1,5上的平均变化率为弋二。)=(3x5+2)-(3xl+2)=3函数g(x)=/在-2,-1上的平均变化率为牛1舁=与=-3.函数g(x)=r在1,5上的平均变化率为乳生型=二1=6.5-143、平均变化率的几何意义yf(x2)-,(x1)平均变化率三,;二如图:表示直线.的斜率

3、。知识点02:函数P=(X)在X=XO处的导数(瞬时变化率)1、定义:函数/(x)在X=x0处瞬时变化率是Iim包=Iim上Ar)二/、。),我们称它为函数y=f(x)x0MrOX在X=XO处的导数,记作r(%)或MEO即/G。尸!吗M=呵voArro【即学即练2(2023全国高二随堂练习)已知函数y=L求自变量X在以下的变化过程中,该函数的平均变化率:自变量X从1变到1.1;(2)自变量X从1变到1.01;(3)自变量X从1变到1.001.估算当x = l时,该函数的瞬时变化率.【答案】(1)10小、100、1000:(2); (3): -1111011001【详解】(1)因为 y = ()

4、 = g,1 1Tj-T_ io.1.1-10.1所以自变量X-S11/(1.01)-(l)_TTT_100,0.01101所以自变量X-翳(3)/(Lool)-/(1)_LoOl一1_I。,1.001-10.0011001所以自变量X-IOOO1001所以可估算当X = I时,y = L的瞬时变化率为-1,证明如下: X而与=/(1+-)-/(1)=占卜高,则於日所以4在X=I处的瞬时变化率为期。%=!色京=T2、定义法求导数步骤:求函数的增量:y=(xo+x)-(xo);求平均变化率:包=/(X。+AY)一x。);xx求极限,得导数U)=M)M=岫Vo+Ay) 一/(%)知识点03:导数的

5、几何意义如图,在曲线V=/()上任取一点Paj(X)P(x,(x),如果当点P(Xj()沿着曲线歹=f()无限趋近于点(%,/(%)时,割线。无限趋近于一个确定的位置,这个确定位置的直线U称为曲线N=/()在点P0P0P的斜率k=【即学即练3(2023高二课时练习)已知函数/a)=/-%,当0时,“I+?-、。;.h【答案】1【详解】因为/(X)=V-X,所以/(1+)-/。)_(l+A)2-(l+p-(12-l)Jh=21hh一一所以当A0时,八?一/1,h故答案为:1知识点04:曲线的切线问题1、在型求切线方程已知:函数/(x)的解析式.计算:函数/(x)在X=X。或者(Xo,/(4)处的

6、切线方程.步骤:第一步:计算切点的纵坐标/(%)(方法:把X=XO代入原函数/(%)中),切点(Xo,/(/).第二步:计算切线斜率左=/).(x0,(x0),切线斜率=/(/)。根据直线的点斜式方程得到切线方程:-/()=(0)(-).【即学即练4】(2023上高二课时练习)已知/(x)=r,求曲线y=(x)在点尸(0,0)处的切线方程.【答案】V=O【详解】根据题意,先由导函数定义求曲线y=()在点尸(0,0)处切线的斜率/(0):当/,0时,力)/(0)=止,2,从而当才趋近于0时,(o)=ynj2=O.因此,曲线y=/在点?(0,()处切线的斜率为0根据在线的点斜式方程为y-0=0(x

7、-0),BPj-O;于是,所求切线方程为F=O.2、过型求切线方程已知:函数/(x)的解析式.计算:过点4区,必)(无论该点是否在歹=(x)上)的切线方程.步骤:第一步:设切点(/Jo)第二步:计算切线斜率左二/(/);计算切线斜率=mXI-XO第三步:令:左=/(/)=5%,解出代入左二/(%)求斜率第三步:计算切线方程.根据直线的点斜式方程得到切线方程:y-o=,()(-).【即学即练5(2023高二单元测试)试求过点Pa-3)且与曲线y=f相切的直线的斜率.【答案】-2或6【详解】设切点坐标为(XOj0),则有,=.因为V=Iim包=Iim丝二匚=2x,所以左=2%.rOAYrOAv切线

8、方程为丁一汽二2%(X-X0),将点(1,一3)代入,得一3-x:=2x0-2x3所以片一2/一3=0,得XO=-I或Xo=3.当Xo=T时,k=-2i当XO=3时,k=6.所以所求直线的斜率为-2或6.题型Ol求物体运动的平均速度(含平均变化率)【典例1】(2023下河南新乡高二统考期中)某物体沿直线运动,其位移S(单位:m)与时间f(单位:S)之间的关系为s(f)=j+g则在144这段时间内,该物体的平均速度为()911A.2msB.-msC.m/sD.3ms44【答案】B【详解】由位移S与时间,之间的关系为SO)=,?+/,根据平均变化率的计算公式,可得在1Z4这段时间内,该物体的平均速

9、度为:故选:B.【典例2】(2023下江西九江高二校联考期中)某汽车在平直的公路上向前行驶,其行驶的路程N与时间UW2,也出,儿,W/上的平均速度的大小分别为E,E则平均速度最小的是()A.v1B.v2C.v3D.V4【答案】C【详解】由题意知,汽车在时间%,4,及4,L/,NH上的平均速度的大小分别为i,E,E,G,设路程y与时间Z的函数关系为歹=,则I=,*,即为经过点&j(g),&,/6)的克线的斜率K,z2-zi同理E为经过点GjG),&,/6)的直线的斜率乃,E为经过点&,/&),&J(O)的直线的斜率收,E为经过点6,/&),&,/&)的直线的斜率勺,如图,由图可知,自最小,即7最

10、小.故选:C.【变式1(2023下辽宁阜新高二校联考阶段练习)函数/()=点在区间1,8上的平均变化率为()11Cl1714147【答案】B【详解】8)-1)_2=1,8-1714故选:B.【变式2(2023全国高二课堂例题)某物体做自由落体运动,其运动方程为s)=ggf2,其中,为下落的时间(单位:s),g2.求它在时间段1,3内的平均速度.【详解】物体在时间段L3内的平均速度为:5(3)5(1)=9gZ=2g=19.6(ms),3-14即它在时间段1,3题型02求物体运动的瞬时速度(含瞬时变化率)【典例1】(2023下宁夏银川高二宁夏育才中学校考阶段练习)在高台跳水运动中,ZS时运动员相对

11、于水面的高度(单位:m)是ME)=-4.9+6.5/+10,则运动员在f=Is时的瞬时速度为()A.-3.3m/sB.-8.2m/sC.3.3m/sD.1.6ms【答案】A【详解】运动员在f=ls时的瞬时速度即为,令歹=00,根据导数的定义,包=力O+4).(I)/At=T.9r-3.3,所以/=Iim包=Iim(-4.9-3.3)=-33,AffONAffO故运动员在,=IS时的瞬时速度为-3.3ms.故选:A.【典例2】(2023河南高二校联考阶段练习)函数/(X)=V在区间0,2上的平均变化率等于X=加时的瞬时变化率,则()aIB.1C.2D.I【答案】B【详解】函数/Cr)=/在区间0

12、,2上的平均变化率等于“22-/(0)=W=2,/(X)=V在X=M时的瞬时变化率为Iim。誓一/(M=Hm4+加)=2n,所以2=2m,解得小=1.故选:B【变式1(2023下浙江嘉兴高二校联考期中)函数/(x)=V在x=2处的瞬时变化率为()A.-2B.2C.4D.-4【答案】C详解因为/(2+)-/(2)=(2+以)2-4=4+4以+州-d.好匚xxx所以,函数/(X)=/在X=2处的瞬时变化率为r(2)=lim2AY)-/(2)=Hm(x+4)=4故选:C.【变式2(2023高二课时练习)已知一物体的运动方程是s=24l3F(s的单位为m,,的单位为s),则物体在/=s时的瞬时速度为1

13、2ms.【答案】2【详解】在f到f+ZV这段时间内,物体的平均速度为U=半=s+)=246L3&.当加无限趋近rr于。时,U无限趋近于246b由题意得246/=12,解得Z=2s.故答案为:2.题型03曲线在某点处的切线斜率或倾斜角【典例1】(2023高二课时练习)已知函数/(x)=x-g,则该函数在X=I处的切线斜率为()A.0B.1C.2D.3【答案】C【详解】因为/(l+r)=(l+x)-),a11Ax=,y+1=x+,lxlx所以斜率k=Iim/(I+)-八1),ArTo=IimI1+!I=I+1=2.0l+xJ故选:C【典例2】(2023下湖北高二校联考期中)点P在曲线y=23-6+9上移动,设点尸处切线的倾斜角为a,则角的范围是()2、八2x冗Q冗、A.,IB.0,-Iu,lC.0,)D.-,Olu-,I【答案】B【详解】解:由y=2一底+:,可得y=6一JL所以yw卜b,H),即2二tan-6,+e),当tan卜五0)时,ag,),当tana,+e)时,a。,所以角a的范围是O,juy,.故选:B.【变式4(2022下安徽黄山高二屯溪一中校考期中)设/(x)为可导函数,且满足!5正守W=T,则曲线y=(x)在点(2J(2)处的切线的斜率是()A. .2B. -2D. -1【答案】B【详解】分析:化简lim52)-(2一

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高等教育 > 微积分

copyright@ 2008-2023 1wenmi网站版权所有

经营许可证编号:宁ICP备2022001189号-1

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。第壹文秘仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知第壹文秘网,我们立即给予删除!