第二十六章反比例函数基础复习卷(二)(26.2).docx

上传人:p** 文档编号:799987 上传时间:2024-03-04 格式:DOCX 页数:6 大小:108.54KB
下载 相关 举报
第二十六章反比例函数基础复习卷(二)(26.2).docx_第1页
第1页 / 共6页
第二十六章反比例函数基础复习卷(二)(26.2).docx_第2页
第2页 / 共6页
第二十六章反比例函数基础复习卷(二)(26.2).docx_第3页
第3页 / 共6页
第二十六章反比例函数基础复习卷(二)(26.2).docx_第4页
第4页 / 共6页
第二十六章反比例函数基础复习卷(二)(26.2).docx_第5页
第5页 / 共6页
第二十六章反比例函数基础复习卷(二)(26.2).docx_第6页
第6页 / 共6页
亲,该文档总共6页,全部预览完了,如果喜欢就下载吧!
资源描述

《第二十六章反比例函数基础复习卷(二)(26.2).docx》由会员分享,可在线阅读,更多相关《第二十六章反比例函数基础复习卷(二)(26.2).docx(6页珍藏版)》请在第壹文秘上搜索。

1、第二十六章反比例函数基础复习卷(二)(26.2)知识点一利用反比例函数解决实际生活中的问题1.已知矩形的面积为8,则它的长y与宽X之间的函数关系用图象大致可以表示为2 .已知某种品牌电脑的显示器的寿命大约为2IO*小时,这种显示器工作的天数为d(天),平均每天工作的时间为K小时),那么3 .近视眼镜的度数y(度)与镜片焦距x(m)成反比例.已知40()度近视眼镜镜片的焦距为().25m,则y与X的函数关系式为()-400n1100n1A-y=-Ry=Cy=丁zy=砥4 .A,B两城市相距720km,一列火车从A城去B城.(1)火车的速度v(kmh)和行驶的时间t(h)之间的函数关系式是.(2)

2、若到达目的地后,按原路匀速返回,并要求在3h内回到A城,则返回的速度应不低于5 .已知某微波炉的使用寿命大约是2x104小时,则这个微波炉使用的天数W(天)与平均每天使用的时间t(小时)之间的函数关系式是如果每天使用微波炉4小时,那么这个微波炉大约可使用一年.6 .一辆汽车匀速通过某段公路,所需时间Mh)与行驶速度v(kmh)满足函数关系:t=T其图象为如图所示的一段曲线且端点为A(40,I)和B(m,0.5).求k和m的直(2)若行驶速度不得超过60km/h,则汽车通过该路段最少需要多少时间?7在25。C的常温中用电热水壶烧开水(水温可达)100。),一壶水用5分钟,烧水过程中水温y可以看成

3、是时间X的一次函数.又过了1分钟,壶中水温开始近似于反比例关系下降.(1)在这个过程中水温在60。C以上的时间是多长?(2)自水烧开到水温恢复到25。C用了多长时间?8 .如图,科技小组准备用材料围建T面积为60疗的矩形科技园ABCD,其中一边AB靠墙,墙长为12m,设AD的长为Xm,DC的长为ym.求y与X之间的函数关系式;Q)若围成矩形科技园ABCD的三边材料总长不超过26m,材料AD和DC的长都是整数,求出满足条件的所有围建方案.12mW9 .工匠制作某种金属工具要进行材料燃烧和锻造两个工,即需要将材料燃烧到800。&然后停止城烧进行锻造操作第8rnin时,材料温度降为(600。,,燃烧

4、时,温度yCC)与时间x(min)成一次函数关系;锻造时,温度yCC)与时间x(min)成反比例关系(如图),已知该材料初始温度是32.(1)分别求出材料城烧和锻造时y与X的函数关系式,并且写出自变量X的取值范围;(2)根据工艺要求,当材料温度低于480。C时,须停止操作,那么锻造的操作时间有多长?知识点二反比例函数在其它学科的应用10 .已知力F,物体在力的方向上通过的距离s和力F所做的功W三者之间有以下关系:W=Fs,则W(W0)为定值时,F与S的IL在温度不变的条件下,通过一次又一次地对顶部的活塞加压,测出每一次加压后缸内气体体积和气体对汽缸壁所产生的压强的数值,如下表:体积x(mL)1

5、0080604020压强y(kPa)6075100150300)则可以反映y与X之间的关系的式子是A CCMn rwwC 3000C 6000A. y=3000x B. y=6000x C.y =D.y -12 .某种蓄电池的电压为定值,使用此电源时,电流I(A)与可变电阻R(C)之间的函数关系如图所示,当用用电器的可变电阻为一.13 .某蓄电池的电压U(V)为定值,使用此电源时,电流I(A)和电阻R(C)成反比例函数关系.且当1=4人时人=5 .此蓄电池的电压是多少?请你写出这一函数的解析式.(2)当电流为5 A时,电阻是多少?(3)当电阻是10 C时,电流是多少?如果以此蓄电池为电源的用电

6、器限制电流不超过IOA ,那么用电器的可变电阻应该控制在什么范围内?的电流为IOA时,/(9,4)9 R(Q)14 .某气球内充满了一定质量的气体,当温度不变时,气球内气体的压强p(kPa)是气体体积V(n?)的反比例函数,其图象如图所(1)求反比例函数的表达式.当气体体积为Im,时,气压是多少?(3)当气球内的气压大于14OkPa时,气球将爆炸.为了安全起见,气体的体积不小于多少?15 .如图所示,小华设计了一个探究杠杆平衡条件的实验:在一根匀质的木杆中点O左侧固定位置B处悬挂重物A,在中点O右侧用一个弹簧秤向下拉,改变弹簧秤与点O的距离X(Cm),观察弹簧秤的示数y(N)的变4匕情况.实验

7、数据记录如下x(cm)IO15202530y(N)30201512IO把上表中(X,y)的各组对应值作为点的坐标,在坐标系中描出相应的点,用平滑曲线连接这些点并观察所得的图象,猜测y与X之间的函数关系,并求出函数关系式.(2)当弹簧秤的示数为24N时,弹簧秤与O点的距离是多少厘米?随着弹簧秤与O点的距离不断减小,弹簧秤上的示数将发生怎样的变化?1.82. C3.C4.(1)v=722/(2)240kVh5.w=殁-146 .解:(1);点A(40.l)在反比例函数t=3上,.k=40,.t=蔡,又丁点B在此函数的图象上,,m=8O;(2)由=争导u=合60,.t,汽车通过该路最少需要Ih.7

8、.解:当0x5时,y=15x+25;当x6时,y=*令15x+25=6(得x=:;令等=60得X=10,10-=1*即水温在60C以上的时间是71min;令等=25得x=24,24-5=19.即自水烧开后到水温恢复到25用了19min.8 .解:由题意得,SaADDC=xy=60,故y=竺;(2)由y=丝,且x、y都是正整数,可得X可取123,4,5,6,10,12,15,20,30,60,.2x+y26,0y12,符合条件的围建方案为:AD=5m,DC=l2m或AD=6m,DC=10m或AD=IOm,DC=6m.9 .解:(1)材料锻造时.设y=(k0),由题意得600=:解得k=4800.

9、当y=800时,=800,解得x=6,点B的坐标为(6.800).材料燃烧时.设y=ax+32(a0),由题意得800=6a+32.解得a=128,:.材料燃烧时,y与X的函数关系式为y=128x+32(0x6).锻造操作时,y与X的函数关系式为y=等(幻6);把y=480代入y=得x=10,10-6=4(min).答:爆造的操作时间为4min.10 .B11.D123.613 .解:(1)U=IR=4x5=20(V).函数解析式是=g当I=5A时,R=4C(3)当R=IOC时.I=2A.(4)因为电流不超过IOA,由/=可得B10,解得R2,则可变电阻应该大于或等于2.3护N)14.(l)p=7;(2)p=96(KPa);舞太h-由y140解得V养即气体的体积不小于靠HP.0蠡(Rn)15解:如图所示:由此可以猜想图象是双曲线,即可以猜测y与X之间的函数关系是反比例函数.设反比例函数的解析式为y=把X=IO,y=30代入求得k=3(X),所以反比例函数的解析式为y=三.(2)把y=24代入y=拳彳导X=125所以当弹簧秤的示数为24N时,弹簧秤与O点的距离是12.5cm,随着弹簧秤与O点的距离不断减小,弹簧秤上的示数不断增大.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 中学教育 > 试题

copyright@ 2008-2023 1wenmi网站版权所有

经营许可证编号:宁ICP备2022001189号-1

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。第壹文秘仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知第壹文秘网,我们立即给予删除!