《余角和补角教学设计-余角和补角说课稿.docx》由会员分享,可在线阅读,更多相关《余角和补角教学设计-余角和补角说课稿.docx(10页珍藏版)》请在第壹文秘上搜索。
1、余角和补角教学设计余角和补角说课稿余角和补角是初中数学七年级的知识点,余角和补角的知识为今后证明角的相等提供了一种依据和方法。以下是本人为你整理的余角和补角教学设计,希望能帮到你。余角和补角教学设计教学目标1、在具体情境中认识余角和补角的概念,并会运用解题;2、经历观察、操作、探究、推理、交流等活动,发展学生的空间观念,培养学生的推理能力和有条理的表达能力;3、体验数学知识的发生、发展过程,敢于面对数学活动中的困难,建立学好数学的信心。教学重点与难点1、教学重点:互为余角、互为补角的概念;2、教学难点:应用方程的思想解决有关余角和补角的问题。教学准备多媒体课件、纸板、三角尺教学过程一、情境引入
2、1、带领同学们领略意大利的比萨斜塔的壮观景象,并思考:斜塔与地面所成的角度和它与竖直方向所成的角度相加为多少度?(课件演示)2、(动手操作1)拿出一个直角纸板,将直角剪成两个角,N1.和N2,问:NI和N2的和为多少度呢?Z1.+Z2=90o,我们把具有这种关系的21、N2称为互余,其中NI叫做/2的余角,N2叫做/1的余角。请同学们根据老师的演示试着说出余角的定义。(设计意图:通过比萨斜塔的现实情境和剪纸这实际操作引出余角概念,既调起学生的兴趣,又直观易懂。)二、新知探究1、余角的定义:如果两个角的和为90。(直角),我们就称这两个角互为余角,简称互余。2、(动手操作2)(1)拿出和的两个角
3、的纸板拼成一个直角,问:“这两个角互余吗?”把其中一个角移开,“这两个角还互余吗?”注意事项1:两角互余只与度数有关,与位置无关。继续提问:直角三角板的和的两个角互为余角吗?老师在前面黑板上画一个的角,班长在后面黑板上画一个的角,这两个角互为余角吗?(2)拿出一个直角纸板,将其剪成三个角,分别标上/1、N2、N3,问:“N1.、N2、N3是互为余角吗?为什么?”注意事项2:互余是两角间的关系。(设计意图:余角的两个注意事项,通过举例、现场操作,让学生说出错误观点,然后以纠错的方法得出,让学生的印象更为深刻。)3、补角的定义:如果两个角的和为(平角),我们就称这两个角互为补角,简称互补。4、游戏
4、一:找朋友环节一:老师把事先准备的标有度数的角的卡片发给一些同学,并介绍了游戏规则:当老师拿出一张卡片,说要找余角(补角)朋友时,拿到它的余角(补角)的同学请立刻起立,并说:“我是一个度的角,我是你的余角(补角)朋友!”环节二:将班级同学分成左右两个大组,参与的同学可以向另外组的同学提出考验:”度的余(补)角是多少度?”另一组的同学要立刻回答,比一比,看一看哪个小组答得又快又正确!(设计意图:通过轻松愉快的游戏过程拉近师生之间的距离,并让学生学会熟练地求解一个角的余角和补角。)三、例题精讲已知:如图,点O为直线AB上一点,ZCOB=,求:(D图中互余的角是与.(2)图中互补的角是与;与(3)图
5、中相等的角是与。若一个角的补角等于它的余角的4倍,求这个角的度数。分析:若设这个角是,则它的补角是(),余角是(),再依据题设中的等量关系“补角=4余角”,便可列出方程求解。解:设这个角是,则根据题意得:解得:答:这个角的度数是。点评:解决这类问题的关键是找出问题中的等量关系,运用方程的观点列方程求解。【变式】一个角的补角是它的3倍,这个角是多少度?四、能力拓展(小组探究)思考:小明在计算角的补角比它的余角大多少时,由于粗心大意,将看成来计算,这对计算结果有影响吗?为什么?(提示)1、算一算:的补角比余角大度;的补角比余角大度;所以,这对计算结果影响。3、思考:如果小明把看成来计算,对计算结果
6、有影响吗?4、再思考:般地,的补角比它的余角大度,你能证明吗?【牛刀小试】:1、已知一个角的余角为,则这个角的补角为2、已知一个角的补角为,则这个角的余角为3、已知一个角的余角与它的补角的和为,则这个角的余角是多少度?(设计意图:本探究及其3道配套练习题主要目的是拓展学生思维,让学生在合作交流中完成由特殊到一般的探究和演绎推理)五、收获广谈这节课我学会了余角和补角说课稿一、说教材1、教材的地位和作用本节教材是华东师大版标准实验教科书初中数学七年级第四章的内容。一方面,这是在学习了角的大小比较的基础上,对角之间关系的进一步深入和拓展;同时又为今后证明角的相等提供r一种依据和方法,起着承前启后的作
7、用。本节教材的编排特点是从生活中的实际问题体验数学问题,归纳数学理论,同时利用理论解决实际问题.2、学情分析学生学习缺乏主动性,独立思维能力较差,动手操作能力相对稍强,能在教师引导下低起点、小步距进行探究。整体逻辑思维能力正在从经验型逐步向理论型发展,初步具备r观察、思维以及想象的学习能力,爱发表见解,在教学中应抓住这些特点,一方面运用直观生动的形象,引发学生的兴趣;另一方面,要创造条件和机会,让学生发表见解,发挥学生学习的主动性。二、教学目标知识目标:了解余角、补角的概念,掌握余角和补角的性质。能力目标:使学生初步接触和体会演绎推理的方法和表述,使学生能用方程思想来处理图形的数量关系。情感目
8、标:通过探索互余、互补角的性质,培养学生积极的情感态度,促进良好的数学观的养成。教学重难点教学重点:余角与补角的概念及性质教学难点:余角与补角的性质应用三、教学教法1、教法:本节课采用“学案导学法”教学。这种教学方法遵循以“学生为主体,教师为主导,数学活动为主线”的指导思想,变被动学习为主动学习,并同时直观动态演示以突破学习难点。2、学法:教师将预先编写好的导学学案,在课前发给学生,根据所教班级的学生的特点,采用“参照学案-自主阅读-独立思考-一提出疑问-分组探究-合作学习-一知识总结”的学习方式。3、教学手段:采用多媒体课件辅助教学,增加课堂容量,提高教学效果。四、教学流程验收成果1、概念:
9、如果两个角的和等于(),就说这两个角互为余角。符号语言:如果Na+NB=,那么Na和NB互为。反之:如果Na与NB互为余角,那么Z+Z=。如果两个角的和等于(),就说这两个角互为补角。符号语言:如果Na+/B=,那么Na和NB互为O反之:如果Na与NB互为补角,那么Za+Z=。设计意图:让学生知道互为余角和互为补角的概念,并会用文字语言和符号语言表示。温馨提示:互为余角、互为补角的两个角只与有关,与无关。设计意图:挖掘概念的内涵、外延,注重在看似“无疑”处设疑,充分拓展学生思维的开阔性,让学生熟悉从多角度对概念进行思考。2、试一试:你最棒!判断:N1.+N2=90,则N1.是余角()N1.+N
10、2+N3=90,则/1、N2、N3互为余角。如果一个角有补角,那么这个角一定是钝角。()钝角没有余角,但一定有补角。()(2)找朋友:图中给出的各角,哪些互为余角?哪些互为补角?103050I1030608060o40o80oI100o12031500170设计意图:进一步强化两个角互余或互补的数量关系,使学生对概念的学习得到及时巩固。(3)已知Na的余角是Na的两倍,则Na的度数是度。设计意图:目的是让学生对余角和补角的概念有更加深化的广解和应用,并且使学生学会用方程思想来解决问题。3、性质等角的补角;等角的余角O设计意图:通过填空使学生了解互为余角、互为补角的性质。思考题:如果NI与N2互
11、余,N3与N4互余,且N1.=/3。那么/2与N4相等吗?为什么?设计意图:这道题引导学生通过独立思考、解答来证明互为余角的性质。着重引导学生用数学语言表达思考过程,并归纳性质,培养学生由具体问题抽象出几何命题的能力和语言表达能力。余角和补角说课稿拓展延伸:1、如图,已知NAOC=NBOC=90,Z1=Z2,则N1.的余角有那些?与N2互补的角有那些?请分别写出来。2、动手实践探究:按图所示的方法折纸,然后回答问题:课堂小结:这节课,使我感受最深的是我感到最困难的是我学会了什么设计意图:其目的是让知识形成体系,理清新知识,培养学生概括提炼能力。达标检测:1、如果N1.+2=90,2+N3=90
12、,那么N1=N3的理由是;2、已知:NA=72,那么NA的余角=;NA的补角(附加题:已知一个角的补角是这个角的余角的3倍,则这个角等于度。设计意图:使教师得到反馈信息、,及时了解学生的学习效果,能按时做对达标检测就达到学习目标,做到r“堂堂清”,并且将所学知识通过训练,内化为解题能力。如图,已知直线AB与CD相交于点E,且CEF=90,写出所有互补和互余的角。课后反思:学案最后要求学生写课后反思设计意图:最后学案中安排学生写课后反思,这样可以使学生对照学习目标,知道自己哪些方面没有学透,以便课下及时补救。看了“余角和补角教学设计”的人还看了:1 .数学余角和补角教学反思2 .余角和补角教学反思3 .色彩的调和教学反思4 .初中数学教研活动心得体会