《第一节 数列的概念与表示答案.docx》由会员分享,可在线阅读,更多相关《第一节 数列的概念与表示答案.docx(10页珍藏版)》请在第壹文秘上搜索。
1、第五章数列第一节数列的概念与表示课程目标通过日常生活和数学中的实例.了解数列的概念和表示方法(列表、困象、通项公式).了解数列是一种特殊函数.基础知识1效列的概念概念含义数列按照确定的顺序排列的一列数数列的项数列中的俅个数数列的通项数列区)的第n项a。通项公式数列)的第11项a11与一号n之间的关系式前n项和数列(an)中,SC=a1.+a,1Mn根Si我列的项是指数列中某一隔定的效,而项微是指数列的项对应的位为:序号.2效列的分类及性质按项数分类)无力数列:项数无限,3数列的表示方法列表法列出表格表示n与an的对应关系图以法把点(n,aBi在平面直角坐标系中公通项公式把数列的通J川公式衣示递
2、推公式如果-个数列的相邻两项或多项之间的关系可以用一个式子来表示,那么这个式子叫做这个数列的递推公武4.数列与函数的关系数列1是从正整数集N(或它的有限子集U,2,!)1)到实数集R的函数,其自变减是Tn,对应的南故佰是数列的第n项1.,记为a=f(n).基础自测1 .判断正误.(正确的画7,:错误的国,)(1)相同的一组数按不同醺序抒列时都表示同一个数列.(X)2 2)I.1.I,I.不能构成一个数列.()(3)任何一个数列都有唯一的通项公式.()(4)如果数列(跖的前n项和为S,则对任意nCN.,都石+=S+1.S”.(2 .已知数列一1,2.-3.2,一、肉,则该数列的第100项为)A.
3、10B-IOC.-11D.IT解析:A由题意知,该教列的通项公式为t=(-nS,a1.1.1.0=(-1)00I=10,故选A.n3 .在数列区中,a=1.a。=1+?(nH2).则a$=1.1(1).(T2解析:Da=1.+i=2.a,=1.+=;.a=1.+i=3.as=1.+=;.a1.aZ2a3a43IW1.4 .若数列的前4项分别是%-i,J.-J.则此数列的一个通项公式为WT-.解析:由题意。奇歆:为正数.偶数项为负数,第n项的她对Ifi等于IW1.故比就列的一个遹项公式为唔二5 .在数列UJ中,Sn=2n2-3n(nN.则a=4nSj=11.解析:Sn=I时,a=S=-1.当nN
4、2时,an=Sn-S-=2n-3n2(n1)2-3g)n.则数列版)中的i大项可以是(A.第6项B.第7项解析:AB亩结也可存(n+2)即6这nW7.所以最大项为第6项和第7项.故逸聚焦考点课堂演练考点I由数列的前几项归纳通项公式且(n+1.)A.B(n+1;(n+2),所以78;(n+1.)n.【例I】(选择性必修第二册第6页例4改嫔)如图,在nXn的单位正方形网格中,阴影相连的正方形个数依次为1,5,9.13,则下一阴影相连的正方形个数为2,这个数列的一个通项公式1=BJ-解析:从阴影相连的正方形。数依次为I.5.9.13看出,从第2项起与一项匕它的前一项多4,故下一阴影相连的正方形个数为
5、13+4=17,且m=5=a+4.a=9=a1.+24.a,1.=1.3=a+34.a5=17=a+44.根据上述规律1=a+4=r-(nI)X4=4n-3.所以遇项公式a=4n-3.方法技巧由数列的前几项归纳通项公式应注意的4个特征(I)分式中分子、分母的挣征:(2)相邻项的变化特征:(3)拆项后的好征:把就列的项标分成变化的部分和不变的部分:(4)各项的符号轮征.丽训练根据卜面各数列前几项的值.写出数列的一个通项公式:(1) -I,7,-13,19.:(2) .:1X22X33X44X5246810?建丁彳r(4)9,99.999.9999.解:(1)偈敷项为正,奇数项为负,故通】;今有因
6、式.(2这个数列的茵4项的绝对值都等于序号与序号加1的桑猊的倒数,且有效项为负,偈数项为正,故它的一个通项公式为an=n.*,n(nI(3这是一个分数数列.其分子构成偶数数列,而分母可分鳏为!3,35,57,79.91.1.,即分母的每一项都是两个相锦奇致的东积,故所求数列的一小通项公式为二工,,-【例2】(1已知数列UJ满足川+2Q+3aj+Wn=2%则拆=_:士n2n(2)已知数列EJ的前n项和为Si且s=2%-1.则数列&的通项公式aft=2Jne=N).解析:I当n=1.时由已知,可得a21.2:Va.,2.n+na=2*t.ita+2a23aa+(n-I)-=21.2,,由一得叫=2
7、n2n=2r2.an=-n三2).显然当n=1.付不满足n2.n=1.上式n-1.n2(2由数列aj的前n项和;Sw.且S-=2a1.1.-1.三S=2a-1.a=1.Xan=Sn-Se-I=Zae-Z;(n2),即an=2an-t(n2),二数列a11是以I为首项,2为公比的等比救列,1=2r(n),方法技巧1.已知S“求皿的3个步骤(I)先利用a=S求出a:(2)用n-1.替换S(I中的n得到一个新的关系,an=S,-Sn-12)转化为只含Sn,SnT的关系式,再求解;(2)利用SII-S=a2)整化为只含a11.a*的关系式,再求解.1 .数列%的前n项的和S11=2-3.则此数列的通项
8、公式&=二I:n=1.(2,n2解析:.数列aM的的n项的和Sn=2-3.当n=1.时.a=S1.=2-3=-,当n32时,an=S1.1.S=2n-3-(2,-3)=21显然当n=1.的不满足上大,.a0=-3n=1(2n-1.,n2.2 .设Sn是数列)的前n项和.已知a=1.,a=T11SBT,整理得=1,又J=1.=,则敛列是以1用首承.I为公Sn-1.MaiSn差的等差数列,因此=1.+n-1.)1.=n.BPSn=-.snn考点3故列的性质考向I数列的周期性2anOan-.,d【例3】(2024济南模拟己知数列UJ满足a0+产.2a=j则数列的2024J为:2an-1.,ianb5
9、解析:因为a=8a=2a-1=7aj=2a1=pm=2aj=3=2a1-1.=pi=2-1=.a7=2aft=.,.5555555故数列Ia(J是周期数列且闾期为4.故a20Q4=asw,7=aj=g.方法技巧解决数列周期性问题的方法根据所给的关系式求出敦列的若干项.通过观察归炳出敦列的周期,进而求出有关项的他或.*n1页的加.考向2数列的单调性【例4】已知数列)中.a“=*.若数列Q1.为递取数列.则实数k的取值范用为()A.C.(1,+D.(0,+)解析:D%+-an=学誓一竽=三字,由a列IaJ为递减数列妞.对任意nGM,an+a=gU3-3n对任意nWN恒成立.所以k的取值苑的为0.+
10、).方法技巧解决故列单调性问翘的方法(1)作之比皎法:极招a+-aa的杆号列断枇列IaJ是递增效列、递成轨列还是常数列:(2)作商比较法:根据Q0a与I的大小关系进拧判断:an(3)函数法:结合相应的的致图象it明判断.考向3数列的是大()项【例5】己知数列EJ满足a=28,四口1=2,则出的以小值为()nnA.B.47-c.yD三解析:Ca,+-a,=2n,可得af1.=a+(a:a)+a-a;)+,+(a-an-)=28+24+2=n1-n+28.三=n+三-1.,设f(x=x+-.可知f(x)在U),27上单调递减.在27.+)上单nnX谢渔好又ncM,且?故选C.方法技巧求数列最大项与
11、最小项的常用方法(I)房效法:利用相关的加数求最值.若能借助表达或现监出单调性,直接隔定达大(小项,否则,利用作息法;(2)解不多式组fna11(n2)骑定找大项,解不等式雄fna1.1.,(n2)列定最小项.(anan+1.(anan+j展踪训雄1 .若数列向的前n项积b,=-n.则a11的最大值与球小值之和为)A.-:B.1C.2DW解析:C;数列(aj的前“Jv=I-n.当n=1.时,a=*当ni2片.Im产1.Jn-1).%=?=1+三.当n=1.时也适合上式,.an=1.+A.当nW4时,敷列J为递减政b1.1._11.-1,故a1,的费大值为as=3,最小值为a4=一.二%的*大值与聚小使之和为2.2 .已知数列(an)中.a=1.aj=2Ma-a+a+2=ana+a02其中nWN.JWaa2aj+,a4=4X.解析:n=1.时,aaja1=a1+a2+a可行aj=3,同理以n=2时,可。:U=1.,n=3时,可得a,=2,以比类推可知数列Iarj的周期为3.所以a+a21.Fa=8+aj)=8X6=48.第一节数列的概念与表示课后分层跟踪巩固基础达标A1.在散-黑,中,熟它的(A.第8项C笫10项B.笫9项D.第11项解析:B由题艮:,双列的通项公式为%=E.令普=?.解得n=9.故选B.4*3411