中科大《线性代数与解析几何》讲义1空间解析几何.docx

上传人:p** 文档编号:310957 上传时间:2023-05-18 格式:DOCX 页数:9 大小:118.51KB
下载 相关 举报
中科大《线性代数与解析几何》讲义1空间解析几何.docx_第1页
第1页 / 共9页
中科大《线性代数与解析几何》讲义1空间解析几何.docx_第2页
第2页 / 共9页
中科大《线性代数与解析几何》讲义1空间解析几何.docx_第3页
第3页 / 共9页
中科大《线性代数与解析几何》讲义1空间解析几何.docx_第4页
第4页 / 共9页
中科大《线性代数与解析几何》讲义1空间解析几何.docx_第5页
第5页 / 共9页
中科大《线性代数与解析几何》讲义1空间解析几何.docx_第6页
第6页 / 共9页
中科大《线性代数与解析几何》讲义1空间解析几何.docx_第7页
第7页 / 共9页
中科大《线性代数与解析几何》讲义1空间解析几何.docx_第8页
第8页 / 共9页
中科大《线性代数与解析几何》讲义1空间解析几何.docx_第9页
第9页 / 共9页
亲,该文档总共9页,全部预览完了,如果喜欢就下载吧!
资源描述

《中科大《线性代数与解析几何》讲义1空间解析几何.docx》由会员分享,可在线阅读,更多相关《中科大《线性代数与解析几何》讲义1空间解析几何.docx(9页珍藏版)》请在第壹文秘上搜索。

1、第一章空间解析几何1.1 直线与平面直线的方程A I_在向量空间中,过任意不同两点AB可作一条直线I。对于直线1上任意点 P,由于向量故有实数I使得A = t- A8。于是得到等式OP = OA +1- AB(1. 1)当t取遍所有实数时,等式(LI)给出直线1上的所有点。等式(1.1)称为直线1的 参数方程,非零向量A称为直线1的方向向量,而t称为参数。设点A的坐标 为(a2,0,), A的坐标为(*,%),点P的坐标为于是直线1的参 数方程可写成坐 标形式X = a +y=a2+ U21z=a3+ Ugt 从方程(1.2)中 (1.2)消去参数t,则可得到直线1的点向式方程X - aiy

2、- 32 Z -, (1.3)U) U2 U31.1.2点到直线的距离设直线1过点A,方向向量u,P为空间中任意一点。过点P作直线1的垂线,垂 足为B。于是,点P到直线1的距离.,-p., 1 u - AP. Iu X Apl/、BPl = API sin O= AP-u=- ._.(1.4)1.13两直线的位置关系向量空间中的任意两条直线Il和12,它们可能共面(平行、相交、重合)或异 面。设Il过点Ml皿,3),方向向量U =,U2,U3); 12过点B(bi, &2, &3),方向 向量V= (vi,V2V3)。两条直线的点向式方程分别为“X - aiy - a2 z- a. X- by

3、 赤 z - &3Ui U2 U3Vi V2 V3h与12共面的充分必要条件是U. KAB共面,即UXV-AB =O(1.5)11和12的方向向量U和V所夹的锐角或直角称为两直线11和12的夹角,.设点分别在h和12上,并且直线CD与1L12都垂直,直线CD称为两直线h 和12的公垂直线,公垂线段CD的长度ICDl称为两直线h和12的距离当h和12平行时,Ii和12的距离就等于点B到h的距离叵料。当h和12不平 行时,因为CD垂直于h和12,所以CDUx V, CD Z一在UXV方向上的 投影, UxV1 n, 1- A - I(16)CD=IllXVl(1 句1.1.4 平面的方程在向量空间

4、中,过任意一点M有唯一的平面n与给定的非零向量n垂直。对 于平面n上任意点P,都有M -1 n,即MP-n = O(1.7)反之,满足等式(1. 7)的点P一定在平面n上。等式(1.7)称为平面n的点法式方 程,非零向量n称为平面n的法向量,设点M的坐标为向机2,小n的坐标为 (n2,n3),点P的坐标为(x,y,z),于是方程(1.7)可写成坐标形式m (x - m) + “2 (y - m2)+ 3 (Z - m3)= O(1.8)将方程(18)展开合并,又可得平面n的一般方程Ax + By + Cz + O = O(1. 9)其中 A=ni, B= 2, C = 3, D= (num +

5、 m2X 8,然后代 入到点向式方程(1.3 )中。1.2. 3中介绍了求两条异面直线Ii和12的距离的方法,现在给出求Ii和12的 公垂线1的方法。设直线Ii和12的方向分别为U和V,贝IjUXV为1的方向向量, Ii和1张成的平面ni具有法向量(IIXV) Xu, 12和1张成的平面力2具 有法向量 (uXv) XK于是可以先求出ni和n2的方程,1正是m和力2的交线。当然,也 可以先求出1在Ii,12上的垂足,然后求出1的方程。1.1.7直线和平面的位置关系向量空间中的任意一条直线1和一个平面n它们可能平行、相交或直线在平 面上。设1的方向向量U= (ui,U2,U3)和力的法向量n-出

6、仇。所夹的锐角或直角为则 F=2- = arcs in与带称为直线1和平面n的夹角。当U和n不垂直时,1和n有唯一的交点,可通过解线性方程组求得交点的 坐标。当U和n垂直时,若Aai Ba-2 Ca, 3 +。= 0,则1和n有公共点(a a2, a3), I 在 n 上;若 Aai + Ba” Cas + = 4则 I 和 n 平行。1.2 空间曲线与曲面1.2.1 曲线和曲面的方程Pa) = (x(t),y(t),z(t)(1.12)表示一条空间曲线,(L 12)称为该曲线的参数方程;P (stt) = (x (stt),y (s,t),z (sit)(1.13)表示一个曲面,(1.13)

7、称为该曲面的参数方程;满足/ (x,y,z) = 0(1. 14)的点(x.y.z)的集合形成一个曲面,(LM)称为该曲面的-般方程;满足g(x, y,%)= (1.15)的点(x,y,z)的集合则是两个曲面f (x,y z)=。和g(x,y,z)=。的交线,(1. 15) 称为该曲线的般方程.1.2.2柱面由一族平行直线形成的曲面叫柱面,这些直线叫做柱面的母线柱面上与每 条母线都相交的一条曲线叫做柱面的一条准线,过准线上的各点作平行于母线方 向的直线,或者将一条母线沿着准线作平行移动,又或者将一条准线沿着母线作 平行移动,都可以得到柱面。-一般地,设母线的方向U = (*,%),准线的参数方

8、程p(t) = (Pl(I) ,P2,P3),则柱面具有参数方程(1. 16)P(s, t) = S U + p(t)1.2.3 锥面由族经过给定点的直线形成的曲面叫锥面.这些直线叫做锥面的母线.那 个定点叫做锥面的顶点C锥面上与每条母线都相交的但不经过顶点的一条曲线叫 做锥面的一条准线.把准线上的各点与顶点用直线联结起来,就可以得到锥面。 TR地,设顶点“2仙),准线的参数方程P(t)= (PI(D,p2(t),P3(。),则锥面具有参 数方程(1.17)P (s, t) = (1 s) A + s p (t)设/ y, z)是一个齐次多项式,如果f (x,y, z) = 0,则对任意实数t

9、都 有 fltx,ty,tz) = 0。因此,f (x,y, z) = 0在空间中表示一个顶点在原点的锥面。它与任 意不过原点的平面的交线都是它的一条准线。1.2.4 旋转面由空间中的一条曲线Y绕着一条直线1旋转而产生的曲面叫做旋转面,丫叫 做旋转面的子午线,1叫做旋转面的轴。1.3 二次曲面简介般方程为三元二次多项式,具有形式aLv2 + ai2xy + OiVcz + 哑寸+ a2iyz + az2 + aix + Chy + aj.的曲面称为二次曲面,常见的二次曲面有222L椭球面% + % + % = 1(a 0,b 0,c 0)2222.单叶双曲面 % -C2= 1 (a 0,b 0,c 0)225. 椭圆抛物面 Z= % (aO.bO)6. 双曲抛物面z= X2-局。0)双曲抛物直俗称马鞍面,可以被看作是OlyZ平面上的抛物线Z= -%沿 着。XZ平面上的抛物线Z= X平行滑动而成。7. 椭圆柱面2 + % = 1 (a 0,b 0)8.2 y2双曲柱面2 = 1 ( 0.b 0)9.抛物柱面y2 = 2px (p 0)

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 研究生考试 > 考研数学

copyright@ 2008-2023 1wenmi网站版权所有

经营许可证编号:宁ICP备2022001189号-1

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。第壹文秘仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知第壹文秘网,我们立即给予删除!