《26等边三角形教案.docx》由会员分享,可在线阅读,更多相关《26等边三角形教案.docx(2页珍藏版)》请在第壹文秘上搜索。
1、等边三角形(2)一、教学目标(一)知识与技能:1.探索含30角的直角三角形的性质;2.理解含30角的直角三角形的性质,并会应用它进行有关的证明和计算.(二)过程与方法:经历探索、发现、猜想、证明直角三角形中有一个角为30的性质的过程,培养学生严谨的数学思维.(三)情感态度与价值观:体验数学活动中的探索与创新、感受数学的严谨性.二、教学重点、难点重点:探索并理解含30角的直角三角形的性质.难点:含30角的直角三角形的性质定理的应用.三、教学过程探究用两个含30角的三角尺,你能拼成一个怎样的三角形?能拼成一个等边三角形吗?说说你的理由.由此你能想到,在直角三角形中,30角所对的直角边与斜边有怎样的
2、大小关系?能证明你的结论吗?ADC是AABC的轴对称图形,因此AB=AD,NBAD=2X30=60,从而aABD是一个等边三角形.再由acbd,可得bc=cd=-!-ab.2在直角三角形中,如果一个锐角等于30,那么它所对的直角边等于斜边的一半.己知:如图,在RtZiABC中,ZACB=90o,NBAC=30.求证:BC=-AB.2证法倍长法证明:延长BC到D,使BD=AB,连接AD.NACB=90,NBAC=30:.ZB=60oZABD是等边三角形.ACBD,BC=JBD2.BC=-AB2证法截半法证明:在BA上截取BD=Ba连接DC.YZB=90o-ZA=60o,BD=BCZBCD是等边三
3、角形,NBDC=60,BD=DC=BC:.ZDCA=ZBDC-ZA=30o=ZAAD=DC=BD=BCAB=AD+BD=2BC BC=-AB2几何符号语言:在RtaABC中,NC=90,NC=30 bc=Lb2例5如图是屋架设计图的一部分,点D是斜梁AB的中点,立柱BC、DE垂直于横梁AC,AB=7.4m,NA=30.立柱BC、DE要多长.解:DEAC,BCAC,ZA=30o BC=-AB,DE=-AD22 BC=-7.4=3.7(m)2又AD=-AB2 DE=-AD=-3.7=1.85(m)22答:立柱BC的长是3.7m,DE的长是1.85m.练习RtaABC中,NC=90,ZB=2ZA,NB和/A各是多少度?边AB与BC之间有什么关系?解:如图,VNC=90A:.ZA+ZB=90oN又YNB=2NA/.3ZA=90o:ZA=30o,NB=60BoLB或AB=2BCC-B2课堂小结1.本节课你有哪些收获?2.还有没解决的问题吗?四、教学反思本节课借助于教学活动的开展,有效地激发了学生的探究热情和学习兴趣,从而引导学生通过自主探究以及合作交流等活动探究并归纳出本节课所学的新知识,促进了学生思维能力的提高.不足之处是部分学生的综合运用知识解决问题的能力还有待于在今后的教学和作业中进行进一步的训练和提高.