《光芯片行业未来发展趋势分析.docx》由会员分享,可在线阅读,更多相关《光芯片行业未来发展趋势分析.docx(18页珍藏版)》请在第壹文秘上搜索。
1、光芯片行业未来发展趋势分析一、营销调研的步骤营销调研的过程,通常包括五个步骤:确定问题与调研目标、拟定调研计划、收集信息、分析信息、提交报告。(一)确定问题与调研目标为保证营销调研的成功和有效,首先要明确所要调研的问题,既不可过于宽泛,也不宜过于狭窄,要有明确的界定并充分考虑调研成果的实效性。其次,在确定问题的基础上,提出特定调研目标。(二)拟定调研计划设计能够有效地收集所需要的信息的计划,包括概述资料来源、调研方法和工具等。由于收集第一手资料花费较大,调研通常从收集第二手资料开始,必要时再采用各种调研方法收集第一手资料,也可以从企业外部的商业公司购买有关资料。调查表和仪器是收集第一手资料采用
2、的主要工具。抽样计划决定三方面的问题:抽样单位指确定调查的对象,抽样范围指确定样本的多少,抽样程序则是指如何确定受访者的过程。接触方法是指如何与调查对象接触的问题。(三)收集信息在拟定调研计划后,可由本企业调研人员承担收集信息的工作,也可委托调研公司收集。面谈访问必须争取被访问者的友好和真诚合作,才能收集到有价值的第一手资料。进行实验调查时,调研人员必须注意使实验组和控制组匹配协调,在调查对象汇集时避免其相互影响,并采用统一的方法对实验进行处理和对外来因素进行控制。(四)分析信息从已获取的有关信息中提炼出适合调研目标的调查结果。在分析过程中,首先要明确这些信息数据是依据何种尺度进行测定、加工的
3、,然后借助多变量统计技术将数据中潜在的各种关系揭示出来,还可将数据资料列成表格,制定一维和二维的频率分布,对主要变量计算其平均数和衡量离中趋势。(五)提交报告调研人员向营销主管提出与进行决策有关的主要调查结果。调研报告应力求简明、准确、完整、客观,为科学决策提供依据。如能使管理决策减少不确定因素,则此项营销研究就是富有成效的。二、客户发展计划与客户发现途径1、客户发展计划客户发展计划是企业通过对一定时期、一定市场区域内客户资源的分析而制定的新客户开发与老客户价值提升计划。其中,老客户价值提升计划指目标市场计划期内增加老客户对本公司产品购买量的计划。客户发展计划涉及客户关系管理全局,用于指导企业
4、客户关系管理的各项活动,应当具备以下特点:一是明确性,明确规定所要达到的目标,不能模棱两可;二是可操作性,各项实施措施必须具体,以便于各部门相关人员执行;三是阶段性,结合企业自身条件、市场需求、市场竞争等因素制定短期、近期与长期计划,实现三者的有机结合;四是可达到性,应当考虑企业自身实际与市场环境实际,使得各部门相关人员有条件、有能力实现计划。2、客户发现途径客户发现是客户开发的前提。根据一般经验,客户发现主要有以下途径:(1)查阅法。查阅各种公开发布的含有工商企业信息的二手资料,如电话号码簿、工商企业名录、各种媒体的信息专栏与广告等。(2)市场咨询法。向有关部门咨询,如市场研究部门、工商行政
5、管理部门等。(3)会议法。参加各种会议,如行业会议、展览会、展销会等。(4)广告开拓法。利用各种广告媒介寻找准顾客,如直接邮寄广告、电话广告、电子商务广告等。(5)链式引荐法。请现有客户推荐新顾客。(6)社会关系拓展法。利用自身的种种社会关系寻找准顾客。(7)中心开花法。通过中心人物的链式关系扩大顾客群,中心人物有行业协会领导、主管部门领导、金融机构领导以及各类有影响力的人物等。(8)市场细分法。通过市场细分发现准客户。(9)历史顾客名单核对法。从以往有过来往或交易关系的客户名单中寻找现在可以继续发展业务关系的客户。(10)地毯式拜访法。销售人员直接走访特定区域所有可能有价值的企业以寻找准顾客
6、。(11)社交群体接触法。在俱乐部、娱乐场、校友会、培训班等各类社交场合接触准客户。(12)个人观察法。销售人员通过对周围环境和人员的直接观察和判断寻找准顾客。(13)随机法。利用各种偶然的机会发现客户,如同机的乘客、同游的游客等。(14)吸引竞争者的顾客。三、(15)委托助手法。即聘用与委托专职人员帮助收集信息,上门拜访,寻找准顾客。光芯片行业面临的机遇光芯片是光通信行业的核心元件,随着传统通信技术的转型升级、运营商推动5G信号的覆盖,光芯片的需求量将持续增长。同时,消费者对更稳定、更快速的信号传输需求扩大,光芯片应用领域将从通信市场拓展至医疗、消费电子和车载激光雷达等更广阔的应用领域。近年
7、来国际贸易形势不稳定,中美贸易摩擦不断,美国不断对我国的技术发展施加限制。针对我国光芯片领域与国外的差距,我国确立光电子芯片技术在宽带网络建设、国家信息安全建设中的战略性地位,并出台一系列支持政策推动核心光芯片研发与应用突破,加快推进光芯片国产自主可控替代计划。四、激光器芯片行业概况全球信息互联规模不断扩大,纯电子信息的运算与传输能力的提升遇到瓶颈,光电信息技术正在崛起。在传统的通信传输领域,早期通过电缆进行信号传输,但电传输损耗大、中继距离短、承载数据量小、信号频率提升受限,而光作为载体兼有容量大、成本低等优点,商用传输领域已逐步被光通信系统替代。随着技术发展与成熟,光电信息技术应用逐步拓展
8、到医疗、消费电子和汽车等新兴领域,为行业发展提供成长空间。光通信是以光信号为信息载体,以光纤作为传输介质,通过电光转换,以光信号进行传输信息的系统。光通信系统传输信号过程中,发射端通过激光器芯片进行电光转换,将电信号转换为光信号,经过光纤传输至接收端,接收端通过探测器芯片进行光电转换,将光信号转换为电信号。高速光芯片是现代高速通讯网络的核心之一。光芯片系实现光电信号转换的基础元件,其性能直接决定了光通信系统的传输效率。光纤接入、4G/5G移动通信网络和数据中心等网络系统里,光芯片都是决定信息传输速度和网络可靠性的关键。光芯片可以进一步组装加工成光电子器件,再集成到光通信设备的收发模块实现广泛应
9、用。光通信等应用领域中,激光器芯片和探测器芯片合称为光芯片。光芯片是光电子器件的重要组成部分,是半导体的重要分类,其技术代表着现代光电技术与微电子技术的前沿研究领域,其发展对光电子产业及电子信息产业具有重大影响。从产业链角度看,光芯片与其他基础构件(电芯片、结构件、辅料等)构成光通信产业上游,产业中游为光器件,包括光组件与光模块,产业下游组装成系统设备,最终应用于电信市场,如光纤接入、4G/5G移动通信网络,云计算、互联网厂商数据中心等领域。光通信产业链中,组件可分为光无源组件和光有源组件。光无源组件在系统中消耗一定能量,实现光信号的传导、分流、阻挡、过滤等交通功能,主要包括光隔离器、光分路器
10、、光开关、光连接器、光背板等;光有源组件在系统中将光电信号相互转换,实现信号传输的功能,主要包括光发射组件、光接收组件、光调制器等。光芯片加工封装为光发射组件(ToSA)及光接收组件(RoSA),再将光收发组件、电芯片、结构件等进一步加工成光模块。光芯片的性能直接决定光模块的传输速率,是光通信产业链的核心之一。五、光芯片重要性突显互联网及云计算的普及推动了数据中心的快速发展,全球互联网业务及应用数据处理集中在数据中心进行,使得数据流量迅速增长,而数据中心需内部处理的数据流量远大于需向外传输的数据流量,使得数据处理复杂度不断提高。根据SynergyReSearCh的数据,截至2020年底,全球2
11、0家主要云和互联网企业运营的超大规模数据中心总数已经达到597个,是2015年的两倍,其中我国占比约10%,排名第二。光通信技术在数据中心领域得到广泛的应用,极大程度提高了其计算能力和数据交换能力。光模块是数据中心内部互连和数据中心相互连接的核心部件,根据LightCOUnting的数据,2019年全球数据中心光模块市场规模为35.04亿美元,预测至2025年,将增长至73.33亿美元,年均复合增长率为13.09%o我国云计算产业持续景气,云计算厂商建设大型及超大型数据中心不断加速。根据中国信通院2021云计算白皮书,2020年我国公有云市场规模达到1,277亿元,同比增长85.2%,私有云市
12、场规模达到814亿元,同比增长26.1%。政策层面,我国将云计算作为产业转型的重要方向,积极推动云计算、数据中心的发展。根据工信部新型数据中心发展三年行动计划(2021-2023年),到2021年底,全国数据中心平均利用率提升到55%以上,到2023年底,全国数据中心机架规模年均增速保持在20%,平均利用率提升到60%以上,带动光芯片市场需求的持续增长。六、光芯片行业未来发展趋势(一)光传感应用领域的拓展,为光芯片带来更多的市场需求光芯片在消费电子市场的应用领域不断拓展。目前,智能终端方面,已使用基于3DVCSEL激光器芯片的方案,实现3D信息传感,如人脸识别。根据YoIe的研究报告,医疗市场
13、方面,智能穿戴设备正在开发基于激光器芯片及硅光技术方案,实现健康医疗的实时监测。同时,随着传统乘用车的电动化、智能化发展,高级别的辅助驾驶技术逐步普及,核心传感器件激光雷达的应用规模将会增大。基于碑化钱(GaAs)和磷化锢(InP)的光芯片作为激光雷达的核心部件,其未来的市场需求将会不断增加。(二)下游模块厂商布局硅光方案,大功率、小发散角、宽工作温度DFB激光器芯片将被广泛应用随着电信骨干网络和数据中心流量快速增长,更高速率光模块的市场需求不断凸显。传统技术主要通过多通道方案实现IOOG以上光模块速度的提升,然而随着数据中心、核心骨干网等场景进入到40OG及更高速率时代,单通道所需的激光器芯
14、片速率要求将随之提高。以400GQSFP-DDDR4硅光模块为例,需要单通道激光器芯片速率达到IOoG。在此背景下,利用CMOS工艺进行光器件开发和集成的新一代硅光技术成为一种趋势。硅光方案中,激光器芯片仅作为外置光源,硅基芯片承担速率调制功能,因此需将激光器芯片发射的光源耦合至硅基材料中。凭借高度集成的制程优势,硅基材料能够整合调制器和无源光路,从而实现调制功能与光路传导功能的集成。例如40OG光模块中,硅光技术利用70硕大功率激光器芯片,将其发射的大功率光源分出4路光路,每一光路以硅基调制器与无源光路波导实现IOOG的调制速率,即可实现40OG传输速率。硅光方案使用的大功率激光器芯片,要求
15、同时具备大功率、高耦合效率、宽工作温度的性能指标,对激光器芯片要求更高。(三)磷化锢(InP)集成光芯片方案是满足下一代高性能网络需求的重要发展方向为满足电信中长距离传输市场对光器件高速率、高性能的需求,现阶段广泛应用基于磷化锢(InP)集成技术的EML激光器芯片。随着光纤接入PoN市场逐步升级为25G/50G-P0N方案,基于激光器芯片、半导体光放大器(SOA)的磷化锢集成方案,如DFB+S0A和EML+S0A,将取代现有的分立DFB激光器芯片方案,提供更高的传输速率和更大的输出功率。此外,下一代数据中心应用400G/800G传输速率方案,传统DFB激光器芯片短期内无法同时满足高带宽性能、高
16、良率的要求,需考虑采用EML激光器芯片以实现单波长IOoG的高速传输特性。同时,随着应用于数据中心间互联的波分相干技术普及,基于磷化锢(InP)集成技术的光芯片由于具备紧凑小型化、高密集成等特点,可应用于双密度四通道小型可插拔封装(QSFP-DD)等更小型端口光模块,其应用规模将进一步的提升。(四)中美贸易摩擦加快进口替代进程,给我国光芯片企业带来增长机遇近年来中美间频繁产生贸易摩擦,美国对诸多商品征收关税,并加大对部分中国企业的限制。由于高端光芯片技术门槛高,我国核心光芯片的国产化率较低,主要依靠进口。根据中国光电子器件产业技术发展路线图(2018-2022年),IOG速率以下激光器芯片国产化率接近80%,IOG速率激光器芯片国产化率接近50%,但25G及以上高速率激光器芯片国产化率不高,国内企业主要依赖于美日领先企业进口。