2024年台湾IMO代表队选拔考试(第三轮)试题(图片版无答案).docx

上传人:p** 文档编号:1125165 上传时间:2024-08-05 格式:DOCX 页数:2 大小:11.14KB
下载 相关 举报
2024年台湾IMO代表队选拔考试(第三轮)试题(图片版无答案).docx_第1页
第1页 / 共2页
2024年台湾IMO代表队选拔考试(第三轮)试题(图片版无答案).docx_第2页
第2页 / 共2页
亲,该文档总共2页,全部预览完了,如果喜欢就下载吧!
资源描述

《2024年台湾IMO代表队选拔考试(第三轮)试题(图片版无答案).docx》由会员分享,可在线阅读,更多相关《2024年台湾IMO代表队选拔考试(第三轮)试题(图片版无答案).docx(2页珍藏版)》请在第壹文秘上搜索。

1、2024年台湾IMO代表队选拔考试(第三轮)MA1 .在X网格的每一个格子里.生活着一些猫(每个格子里猫的数目必须是一个非负整数).每天夜里,猫的主人选取一个格子,按照以下规则进行操作:a)所选格子里猫的数目必须不少于与该格子相邻的格子数.b)主人从所选格子里分别拿一只猫,放到该格子的每一个相邻的格子里.(两个格子称为“相邻”的,如果它们有一条公共边,例如,网格角上的格子只有2个相邻的格子.)问整个网格里最少需有多少只猫,才能使猫的主人能够无限次进行上述操作?2 .在椭圆C-.x2+2炉=2008上任取一个有理点PO(XP,力).按以下规则递推地定义点P,Pi,i)选取一个格点Qt=(H,对C

2、满足因50,M50.ii)射线PQi与C相交于另一点A.证明:对任意点P。,我们可以选择合适的点。,。】,使得存在kNU0,满足。以=2017.1 .设Zn个实数Xi(i=1,2,,?),满足Z七=S.之2为整数.证明:;-2,且等号成立的充分必要条件是Xi(i=1,2,,。中恰有两个数相等且不等于0,而其余的数均等于0.2 .ABC中,NJ=60。,O为其外心,H为其垂心.设M为线段8H上一点,在直线C上选取一点N,满足H位于C,N之间.且BM=CM求+的所有可能值.OH1 .设。”注0为公差为d的等差数列,且1.od定义该数列为So,并按以下2个步装递推地定义数列S”:步骤1:令数列Sn的

3、首项为上,并去除人.步骤2:将前从项每项加1,得到数列SK1.证明:存在一个常数C,使得bn=CG1对所有20成立,其中U为取整函数.2 .(同2016IMOShort1.istG8)1.(同2016IMOShort1.istC3)3 .证明:存在一个整系数多项式工满足以下条件:a)(x)=0无有理数根.b)对任意整数,总存在整数也使得整除遂,).4 .设为A4BC的外接圆.令A为A关于的对径点,作点D,使得AbCD为等边三角形(4和D位于边BC的两侧).过4作RD的垂线,分别交Ca于瓦E作点7,使得ETF为底边为EF,底角为30。的等腰三角形(4和T位于边EF的两侧).证明:/T经过AdBC的九点圆圆心.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 中学教育 > 试题

copyright@ 2008-2023 1wenmi网站版权所有

经营许可证编号:宁ICP备2022001189号-1

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。第壹文秘仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知第壹文秘网,我们立即给予删除!